【題目】根據(jù)下列數(shù)量關(guān)系列不等式:
(1)a與1的和是正數(shù) ;
(2)a的和b的的差是負數(shù) ;
(3)a與b的兩數(shù)和的平方不大于9 ;
(4)a的倍與b的和的平方是非負數(shù) .
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)將原來400平方米的正方形場地改建成300平方米的長方形場地,且長和寬之比為3∶2.如果把原來正方形場地的鐵柵欄圍墻利用起來圍成新場地的長方形圍墻,那么這些鐵柵欄是否夠用?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究:
(1)如圖①,邊長為4的等邊△OAB位于平面直角坐標系中,將△OAB折疊,使點B落在OA的中點處,則折痕長為;
(2)如圖②,矩形OABC位于平面直角坐標系中,其中OA=8,AB=6,將矩形沿線段MN折疊,點B落在x軸上,其中AN= AB,求折痕MN的長;
(3)如圖③,四邊形OABC位于平面直角坐標系中,其中OA=AB=6,CB=4,BC∥OA,AB⊥OA于點A,點Q(4,3)為四邊形內(nèi)部一點,將四邊形折疊,使點B落在x軸上,問是否存在過點Q的折痕,若存在,求出折痕長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BC是△ABD的角平分線,BC=DC,∠A=∠E=30°,∠D=50°.
(1)寫出AB=DE的理由;
(2)求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)如圖,在ABCD中,∠BCD=120°,分別延長DC、BC到點E,F(xiàn),使得△BCE和△CDF都是正三角形.
(1)求證:AE=AF;
(2)求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=ax+b與雙曲線y= (x>0)交于A(x1 , y1),B(x2 , y2)兩點(A與B不重合),直線AB與x軸交于P(x0 , 0),與y軸交于點C.
(1)若A,B兩點坐標分別為(1,3),(3,y2),求點P的坐標.
(2)若b=y1+1,點P的坐標為(6,0),且AB=BP,求A,B兩點的坐標.
(3)結(jié)合(1),(2)中的結(jié)果,猜想并用等式表示x1 , x2 , x0之間的關(guān)系(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與⊙M相交于A、B、C、D四點,其中A、B兩點的坐標分別為(﹣1,0),(0,﹣2),點D在x軸上且AD為⊙M的直徑.點E是⊙M與y軸的另一個交點,過劣弧 上的點F作FH⊥AD于點H,且FH=1.5
(1)求點D的坐標及該拋物線的表達式;
(2)若點P是x軸上的一個動點,試求出△PEF的周長最小時點P的坐標;
(3)在拋物線的對稱軸上是否存在點Q,使△QCM是等腰三角形?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結(jié)EF,分別交AD、BC于點G、H.若∠1=∠2,∠A=∠C,試說明AD//BC和AB//CD.請完成下面的推理過程,填寫理由或數(shù)學式:
∵∠1=∠2,∠1=∠AGH(_________)
∴∠2=∠AGH(________)
∴AD//BC(________)
∴∠ADE=∠C(________)
∵∠A=∠C(已知)
∴∠ADE=_______(等量代換)
∴AB//CD(_______)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在中,,分別過、點作互相平行的直線、,過點的直線分別交直線、于點、.
(1);
① 若,直接寫出、的數(shù)量關(guān)系;
② 如圖1,與不垂直,判斷上述結(jié)論是否還成立,并說明理由;
(2)如圖2,,,,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com