等腰Rt△ABC中,∠BAC=90°,點A、點B分別是x軸、y軸兩個動點,直角邊AC交x軸于點D,斜邊BC交y軸于點E。
(1)如圖(1),若A(0,1),B(2,0),求C點的坐標;
(2)如圖(2), 當?shù)妊黂t△ABC運動到使點D恰為AC中點時,連接DE,求證:∠ADB=∠CDE;
(3)如圖(3),在等腰Rt△ABC不斷運動的過程中,若滿足BD始終是∠ABC的平分線,試探究:線段OA、OD、BD三者之間是否存在某一固定的數(shù)量關(guān)系,并說明理由。
(1)C(-1,-1);(2)見解析;(3)BD=2(OA +OD)
【解析】
試題分析:(1)過點C作CF⊥y軸于點F,則△ACF≌△ABO(AAS),即得CF=OA=1,AF=OB=2,
從而求得結(jié)果;
(2)過點C作CG⊥AC交y軸于點G,則△ACG≌△ABD(ASA),即得CG=AD=CD,∠ADB=∠G, 由∠DCE=∠GCE=45°,可證△DCE≌△GCE(SAS)得∠CDE=∠G,從而得到結(jié)論;
(3)在OB上截取OH=OD,連接AH,由對稱性得AD=AH, ∠ADH=∠AHD,可得∠AHD=∠ADH=∠BAO=∠BEO,即得∠AEC=∠BHA,從而證得△ACE≌△BAH(AAS),即可得到 AE=BH=2OA,從而得到結(jié)果.
(1)如圖,過點C作CF⊥y軸于點F
則△ACF≌△ABO(AAS),
∴CF=OA=1,AF=OB=2
∴OF=1
∴C(-1,-1);
(2)如圖,過點C作CG⊥AC交y軸于點G
則△ACG≌△ABD(ASA)
∴CG=AD=CD,∠ADB=∠G
∵∠DCE=∠GCE=45°
∴△DCE≌△GCE(SAS)
∴∠CDE=∠G
∴∠ADB=∠CDE;
(3) 如圖,在OB上截取OH=OD,連接AH
由對稱性得AD=AH, ∠ADH=∠AHD
∴∠AHD=∠ADH=∠BAO=∠BEO
∴∠AEC=∠BHA
又∵AB=AC ∠CAE=∠ABH
∴△ACE≌△BAH(AAS)
∴AE=BH=2OA
∵DH=2OD
∴BD=2(OA +OD)
考點:本題考查的是全等三角形的判定和性質(zhì)
點評:解答本題的關(guān)鍵是正確作出輔助線,同時熟練掌握全等三角形的判定方法,靈活選擇恰當?shù)娜切芜M行分析.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com