【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H.點G在⊙O上,過點G作直線EF,交CD延長線于點E,交AB的延長線于點F.連接AG交CD于K,且KE=GE.
(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若AC∥EF,,F(xiàn)B=1,求⊙O的半徑.
【答案】(1)相切,理由見解析;(2)4.
【解析】
試題分析:(1)求出∠OGA=∠OAG,∠AKH+∠OAG=90°,∠KGE=∠GKE=∠AKH,推出∠KGE+∠OGA=∠AKH+∠OAG=90°,得出∠OGE=90°,根據(jù)切線的判定推出即可;
(2)求出∠F=∠CAH,∠OGF=∠CHA=90°,推出Rt△AHC∽Rt△FGO,得出,根據(jù)
求出,得出方程,解出即可.
試題解析:(1)如圖,連接OG.
∵OA=OG,∴∠OGA=∠OAG.
∵CD⊥AB,∴∠AKH+∠OAG=90°.
∵KE=GE,
∴∠KGE=∠GKE=∠AKH.
∴∠KGE+∠OGA=∠AKH+∠OAG=90°.
∴∠OGE=90°,即OG⊥EF.
又∵G在圓O上,∴EF與圓O相切.
(2)∵AC∥EF, ∴∠F=∠CAH,
∴Rt△AHC∽ Rt△FGO. ∴.
∵在Rt△OAH中,,設(shè)AH=3t,則AC=5t,CH=4t.
∴. ∴.
∵FB=1 ∴,解得:OG=4.
∴圓O的半徑為4 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠1=∠4( )
∴∠2=∠4 (等量代換)
∴CE∥BF ( )
∴∠ =∠3( )
又∵∠B=∠C(已知),∴∠3=∠B(等量代換)
∴AB∥CD ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有A、B兩個黑布袋,A布袋中有四個除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字1,2,3,4,B布袋中有三個除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字2,4,6.小明先從A布袋中隨機取出﹣個小球,用m表示取出的球上標(biāo)有的數(shù)字,再從B布袋中隨機取出一個小球,用n表示取出的球上標(biāo)有的數(shù)字.
(1)若用(m,n)表示小明取球時m與n 的對應(yīng)值,請畫出樹形圖或列表寫出(m,n)的所有取值;
(2)求關(guān)于x的一元二次方程x2﹣mx+n=0有實數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(a﹣1)x2+2x+a﹣1=0.
(1)若該方程有一根為2,求a的值及方程的另一根;
(2)當(dāng)a為何值時,方程僅有一個根?求出此時a的值及方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,矩形ABCD中,AB=5,BC=12,對角線AC、BD相交于點O,點P是線段AD上任意一點,且PE⊥AC于點E,PF⊥BD于點F,則PE+PF等于( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)概念:
三角形一邊的延長線與三角形另一邊的夾角叫做三角形的外角.如圖1中∠ACD是△AOC的外角,那么∠ACD與∠A、∠O之間有什么關(guān)系呢?
∵∠ACD=180°﹣∠ACO,∠A+∠O=180°﹣∠ACO
∴∠ACD=∠A+ ,
結(jié)論:三角形的外角等于與它不相鄰的兩個內(nèi)角的 .
問題探究:
(1)如圖2,已知:∠AOB=∠ACP=∠BDP=60°,且AO=BO,則△AOC △OBD;
(2)如圖3,已知∠ACP=∠BDP=45°,且AO=BO,當(dāng)∠AOB= °,△AOC≌△OBD;
應(yīng)用結(jié)論:
(3)如圖4,∠AOB=90°,OA=OB,AC⊥OP,BD⊥OP,請說明:AC=CD+BD.
拓展應(yīng)用:
(4)如圖5,四邊形ABCD,AB=BC,BD平分∠ADC,AE∥CD,∠ABC+∠AEB=180°,EB=5,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.平面直角坐標(biāo)系的原點O在格點上, 軸、軸都在網(wǎng)格線上.線段AB的端點A、B在格點上.
(1)將線段AB繞點O逆時針90°得到線段A1B1,請在圖中畫出線段A1B1;
(2)在(1)的條件下,線段A2B2與線段A1B1關(guān)于原點O成中心對稱,請在圖中畫出線段A2B2;
(3)在(1)、(2)的條件下,點P是此平面直角坐標(biāo)系內(nèi)的一點,當(dāng)以點A、B、B2、P為頂點的四邊形是平行四邊形時,請直接寫出點P的坐標(biāo): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為2a、寬為2b的長方形(其中a,b均為正數(shù),且a>b),沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖2方式拼成一個大正方形。
(1)你認(rèn)為圖2中大正方形的邊長為___;小正方形(陰影部分)的邊長為___.(用含a、b的代數(shù)式表示)
(2)仔細(xì)觀察圖2,請你寫出下列三個代數(shù)式:(ab),(a+b),ab所表示的圖形面積之間的相等關(guān)系,并選取適合a、b的數(shù)值加以驗證。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生課余生活,某區(qū)教育部門準(zhǔn)備在七年級開設(shè)興趣課堂.為了了解學(xué)生對音樂、書法、球類、繪畫這四個興趣小組的喜愛情況,在全區(qū)進行隨機抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計圖(信息不完整),請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了多少名同學(xué)?
(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中音樂部分的圓心角的度數(shù)
(3)如果該區(qū)七年級共有2000名學(xué)生參加這4個課外興趣小組,而每名教師最多只能輔導(dǎo)本組的20名學(xué)生,則繪畫興趣小組至少需要準(zhǔn)備多少名教師?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com