精英家教網 > 初中數學 > 題目詳情

【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據圖中提供的信息解答下列問題:

(1)九(1)班的學生人數為 ,并把條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中m= ,n= ,表示“足球”的扇形的圓心角是 度;

(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

【答案】(1)40;(2)10;20;72;(3).

【解析】

試題分析:(1)根據喜歡籃球的人數與所占的百分比列式計算即可求出學生的總人數,再求出喜歡足球的人數,然后補全統(tǒng)計圖即可;

(2)分別求出喜歡排球、喜歡足球的百分比即可得到m、n的值,用喜歡足球的人數所占的百分比乘以360°即可;

(3)畫出樹狀圖,然后根據概率公式列式計算即可得解.

試題解析:(1)九(1)班的學生人數為:12÷30%=40(人),

喜歡足球的人數為:40-4-12-16=40-32=8(人),

補全統(tǒng)計圖如圖所示;

(2)∵×100%=10%,

×100%=20%,

∴m=10,n=20,

表示“足球”的扇形的圓心角是20%×360°=72°;

(3)根據題意畫出樹狀圖如下:

一共有12種情況,恰好是1男1女的情況有6種,

∴P(恰好是1男1女)=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形OABC的頂點O在坐標原點,且OA邊和AB邊所在直線的解析式分別為:

(1)求正方形OABC的邊長;

(2)現(xiàn)有動點P、Q分別從C、A同時出發(fā),點P沿線段CB向終點B運動,速度為每秒1個單位,點Q沿折線A→O→C向終點C運動,速度為每秒k個單位,設運動時間為2秒.當k為何值時,將CPQ沿它的一邊翻折,使得翻折前后的兩個三角形組成的四邊形為菱形?

(3)若正方形以每秒個單位的速度沿射線AO下滑,直至頂點C落在x軸上時停止下滑.設正方形在x軸下方部分的面積為S,求S關于滑行時間t的函數關系式,并寫出相應自變量t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算﹣2+3=( )

A. 1 B. ﹣1 C. 5 D. ﹣5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個角的補角加上100等于這個角的余角的3,求這個角.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果點A1,m)在直線y=-2x+1上,那么m=___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】本題共10分水果批發(fā)市場有一種高檔水果,如果每千克盈利毛利潤10元,每天可售出500千克經市場調查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷量將減少20千克

1若以每千克能盈利18元的單價出售,問每天的總毛利潤為多少元?

2現(xiàn)市場要保證每天總毛利潤6000元,同時又要使顧客得到實惠,則每千克應漲價多少元?

3現(xiàn)需按毛利潤的10%交納各種稅費,人工費每日按銷售量每千克支出09元,水電房租費每日102元,若剩下的每天總純利潤要達到5100元,則每千克漲價應為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知菱形的兩條對角線長分別是68,則這個菱形的面積為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】x2+ax+9是一個完全平方式,則a的值是________________;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩同學的家與學校的距離均為3000米.甲同學先步行600米,然后乘公交車去學校、乙同學騎自行車去學校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學同時從家發(fā)去學校,結果甲同學比乙同學早到2分鐘.

1求乙騎自行車的速度;

2當甲到達學校時,乙同學離學校還有多遠?

查看答案和解析>>

同步練習冊答案