【題目】如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連結CE、AE、CD,若∠AEC=∠ODC.
(1)求證:直線CD為⊙O的切線;
(2)若AB=5,BC=4,求線段CD的長.
【答案】(1)詳見解析;(2)DC=.
【解析】
試題分析:(1)利用圓周角定理結合等腰三角形的性質得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圓周角定理得出∠ACB=90°,利用相似三角形的判定與性質得出DC的長.
試題解析:(1)證明:連接OC,
∵∠CEA=∠CBA,∠AEC=∠ODC,
∴∠CBA=∠ODC,
又∵∠CFD=∠BFO,
∴∠DCB=∠BOF,
∵CO=BO,
∴∠OCF=∠B,
∵∠B+∠BOF=90°,
∴∠OCF+∠DCB=90°,
∴直線CD為⊙O的切線;
(2)解:連接AC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠DCO=∠ACB,
又∵∠D=∠B
∴△OCD∽△ACB,
∵∠ACB=90°,AB=5,BC=4,
∴AC=3,
∴,
即,
解得:DC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在¨ABCD中,過點D作DE⊥AB與點E,點F在邊CD上,DF=BE,連接AF,BF
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE, OP⊥CD,∠ABO=40°,則下列結論:①∠BO E=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結論有(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com