在直線m上找一點C,使CA+CB的值最小.
分析:作點A關(guān)于直線m的對稱點A′,連接A′B交直線m于點C,則CA+CB的值最。
解答:解:如圖,

點C即為所求.
點評:本題考查了軸對稱-最短路線問題,解決此類問題時,通常利用軸對稱,將折線轉(zhuǎn)化成直線,再根據(jù)“兩點之間,線段最短”等知識得到最短線段.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下列材料:
問題:如圖1,點A,B在直線l的同側(cè),在直線l上找一點P,使得AP+BP的值最小.
小明的思路是:如圖2,作點A關(guān)于直線l的對稱點A′,連接A′B,則A′B與直線l的交點P即為所求.
精英家教網(wǎng)
請你參考小明同學(xué)的思路,探究并解決下列問題:
(1)如圖3,在圖2的基礎(chǔ)上,設(shè)AA′與直線l的交點為C,過點B作BD⊥l,垂足為D.若CP=1,PD=2,AC=1,寫出AP+BP的值;
(2)將(1)中的條件“AC=1”去掉,換成“BD=4-AC”,其它條件不變,寫出此時AP+BP的值;
(3)請結(jié)合圖形,直接寫出
(2m-3)2+1
+
(8-2m)2+4
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知直線l和點A、B,在直線l上找一點P,使△PAB的周長最小,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x+12的圖象分別交x軸、y軸于A、B兩點,過點A的直線交y軸正半軸于點M,且點M為線段OB的中點.
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點P,使得S△ABP=S△AOB,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某課外活動小組對課本上的一道習(xí)題學(xué)習(xí)后,進(jìn)行了拓展應(yīng)用:
(1)如圖1,是在直線l上找一點P,使得PA+PB最短(畫圖即可).
(2)如圖2,應(yīng)用:已知正方形ABCD中,E為AB的中點,在線段BD上找一點P,使得PA+PE的值最小,并說明理由.
(3)探索:E為正方形ABCD的AB邊的中點,如圖3,M為BC上一點,N為CD上一點,連接EM,MN,NA,請你應(yīng)用(1)的原理在圖2中找出點M,N,使得EM+MN+NA的值最小,畫圖即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直線l上找一點P,使點P到已知點A,B的距離相等.

查看答案和解析>>

同步練習(xí)冊答案