26、如圖1,直線AC∥BD,直線AC、BD及直線AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六個(gè)部分.點(diǎn)P是其中的一個(gè)動(dòng)點(diǎn),連接PA、PB,觀察∠APB、∠PAC、∠PBD三個(gè)角.規(guī)定:直線AC、BD、AB上的各點(diǎn)不屬于(1)、(2)、(3)、(4)、(5)、(6)六個(gè)部分中的任何一個(gè)部分.
當(dāng)動(dòng)點(diǎn)P落在第(1)部分時(shí),可得:∠APB=∠PAC+∠PBD,請(qǐng)閱讀下面的解答過程,并在相應(yīng)的括號(hào)內(nèi)填注理由
解:過點(diǎn)P作EF∥AC,如圖2
因?yàn)锳C∥BD(已知),EF∥AC(所作),
所以EF∥BD
(平行線的傳遞性)

所以∠BPE=∠PBD
(兩直線平行,內(nèi)錯(cuò)角相等)

同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD
(等量代換)

即∠APB=∠PAC+∠PBD.
(1)當(dāng)動(dòng)點(diǎn)P落在第(2)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出∠APB、∠PAC、∠PBD之間滿足的關(guān)系式,不必說明理由.
(2)當(dāng)動(dòng)點(diǎn)P在第(3)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出相應(yīng)的結(jié)論.
(3)當(dāng)動(dòng)點(diǎn)P在第(4)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出相應(yīng)的結(jié)論.
分析:根據(jù)平行線的傳遞性、平行線的性質(zhì)填空;
(1)過點(diǎn)P作EF∥AC,如圖3,根據(jù)平行線的性質(zhì)、傳遞性和等式的基本性質(zhì)可得出∠APB+∠PAC+∠PBD=360°;
(2)過點(diǎn)P作EF∥AC,如圖4,根據(jù)平行線的性質(zhì)、傳遞性可得出∠PAC=∠APB+∠PBD;
(3)過點(diǎn)P作EF∥AC,如圖5,根據(jù)平行線的性質(zhì)、傳遞性可得出∠PAC+∠APB=∠PBD.
解答:解:過點(diǎn)P作EF∥AC,如圖2
因?yàn)锳C∥BD(已知),EF∥AC(所作),
所以EF∥BD (平行線的傳遞性).
所以∠BPE=∠PBD (兩直線平行,內(nèi)錯(cuò)角相等).
同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD(等量代換),
即∠APB=∠PAC+∠PBD.
(1)過點(diǎn)P作EF∥AC,如圖3,

因?yàn)锳C∥BD(已知),EF∥AC(所作),
所以EF∥BD (平行線的傳遞性).
所以∠BPF+∠PBD=180° (兩直線平行,同旁內(nèi)角互補(bǔ)).
同理∠APF+∠PAC=180° (兩直線平行,同旁內(nèi)角互補(bǔ)).
因此∠APF+∠BPF+∠PAC+∠PBD=360°(等式的基本性質(zhì)),
即∠APB+∠PAC+∠PBD=360°.
(2)過點(diǎn)P作EF∥AC,如圖4,

∠PAC=∠APB+∠PBD;
(3)過點(diǎn)P作EF∥AC,如圖5,

∠PAC+∠APB=∠PBD.
故答案為:平行線的傳遞性,兩直線平行,內(nèi)錯(cuò)角相等,等量代換).
點(diǎn)評(píng):本題考查了平行線的性質(zhì)以及數(shù)形結(jié)合思想的應(yīng)用,是基礎(chǔ)知識(shí)比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省姜堰市八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,一直線AC與已知直線AB:關(guān)于y軸對(duì)稱。

(1)求直線AC的解析式;
(2)說明兩直線與x軸圍成的三角形是等腰三角形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆江蘇省姜堰市八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,一直線AC與已知直線AB:關(guān)于y軸對(duì)稱。

(1)求直線AC的解析式;

(2)說明兩直線與x軸圍成的三角形是等腰三角形。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,直線AC∥BD,直線AC、BD及直線AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六個(gè)部分.點(diǎn)P是其中的一個(gè)動(dòng)點(diǎn),連接PA、PB,觀察∠APB、∠PAC、∠PBD三個(gè)角.規(guī)定:直線AC、BD、AB上的各點(diǎn)不屬于(1)、(2)、(3)、(4)、(5)、(6)六個(gè)部分中的任何一個(gè)部分.
當(dāng)動(dòng)點(diǎn)P落在第(1)部分時(shí),可得:∠APB=∠PAC+∠PBD,請(qǐng)閱讀下面的解答過程,并在相應(yīng)的括號(hào)內(nèi)填注理由
解:過點(diǎn)P作EF∥AC,如圖2
因?yàn)锳C∥BD(已知),EF∥AC(所作),
所以EF∥BD______.
所以∠BPE=∠PBD______.
同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD______,
即∠APB=∠PAC+∠PBD.
(1)當(dāng)動(dòng)點(diǎn)P落在第(2)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出∠APB、∠PAC、∠PBD之間滿足的關(guān)系式,不必說明理由.
(2)當(dāng)動(dòng)點(diǎn)P在第(3)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出相應(yīng)的結(jié)論.
(3)當(dāng)動(dòng)點(diǎn)P在第(4)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出相應(yīng)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,直線ACBD,直線AC、BD及直線AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六個(gè)部分.點(diǎn)P是其中的一個(gè)動(dòng)點(diǎn),連接PA、PB,觀察∠APB、∠PAC、∠PBD三個(gè)角.規(guī)定:直線AC、BD、AB上的各點(diǎn)不屬于(1)、(2)、(3)、(4)、(5)、(6)六個(gè)部分中的任何一個(gè)部分.
當(dāng)動(dòng)點(diǎn)P落在第(1)部分時(shí),可得:∠APB=∠PAC+∠PBD,請(qǐng)閱讀下面的解答過程,并在相應(yīng)的括號(hào)內(nèi)填注理由
過點(diǎn)P作EFAC,如圖2
因?yàn)锳CBD(已知),EFAC(所作),
所以EFBD______.
所以∠BPE=∠PBD______.
同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD______,
即∠APB=∠PAC+∠PBD.
(1)當(dāng)動(dòng)點(diǎn)P落在第(2)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出∠APB、∠PAC、∠PBD之間滿足的關(guān)系式,不必說明理由.
(2)當(dāng)動(dòng)點(diǎn)P在第(3)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出相應(yīng)的結(jié)論.
(3)當(dāng)動(dòng)點(diǎn)P在第(4)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出相應(yīng)的結(jié)論.

精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案