如圖,在矩形紙片ABCD中,AB=2cm,點E在BC上,且AE=CE.若將紙片沿AE折疊,點B恰好與AC上的點B1重合,則AC=      cm.
4

分析:根據(jù)題意推出AB=AB=2,由AE=CE推出AB=BC,即AC=4.
解答:解:∵AB=2cm,AB=AB1
∴AB=2cm,
∵四邊形ABCD是矩形,AE=CE,
∴∠ABE=∠ABE=90°
∵AE=CE,
∴AB=BC,
∴AC=4cm.
故答案為:4.
點評:本題主要考查翻折的性質(zhì)、矩形的性質(zhì)、等腰三角形的性質(zhì),解題的關鍵在于推出AB=AB1.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題8分)在等腰梯形ABCD中,ABDCAD=BC=5,DC=7,AB=13,點P從點A出發(fā)以每秒2個單位長度的速度沿ADDC向終點C運動,同時點Q從點B出發(fā),以每秒1個單位的速度沿BA向終點A運動,設運動時間為t秒.
⑴當t為何值時,四邊形PQBC為平行四邊形時?
⑵在整個運動過程中,當t為何值時,以點C、PQ為頂點的三角形是直角三角形?
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題5分)如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,且AE=CF,
則四邊形DEBF是平行四邊形嗎?說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若平行四邊形的一邊和一條對角線長都是10㎝,則另一條對角線長可以(  。
A.5㎝              B.10㎝           C.20㎝  D.30㎝

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在?ABCD中,對角線AC=21㎝,BE⊥AC,垂足為E,且BE=5㎝,AD=7㎝,則AD和BC之間的距離為              。
  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法中,正確的是(  )
A.對角線相等的四邊形是矩形
B.對角線互相垂直的四邊形是菱形
C.對角線相等的平行四邊形是矩形
D.對角線互相垂直的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(滿分l0分)如圖,在△ABC中,∠ACB=90°,點E為AB中點,連結(jié)CE,過點E作ED上BC于點D,在DE的延長線上取一點F,使得AF=CE,求證:四邊形ACEF是平行四邊形。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,若再加上一個條件___________,則可得梯形ABCD是等腰梯形。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.如,平行四邊形的一條對角線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的是_______;
(2)如圖1,梯形ABCD中,ABDC,如果延長DCE,使CEAB,連接AE,那么有S梯形ABCD SADE.請你給出這個結(jié)論成立的理由,并過點A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖2,四邊形ABCD中,ABCD不平行,SADCSABC,過點A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出說明;若不能,說明理由.

查看答案和解析>>

同步練習冊答案