直接寫(xiě)出答案:
(1)|-
2
3
|÷|+
2
3
|
=
1
1

( 2)(+5)+(-7)=
-2
-2

(3)-(-
1
2
4
-
1
16
-
1
16

(4)(
1
3
-
1
2
)×12
-2
-2
分析:(1)先利用絕對(duì)值的代數(shù)意義:正數(shù)的絕對(duì)值等于它本身;負(fù)數(shù)的絕對(duì)值等于它的相反數(shù)化簡(jiǎn)原式,然后利用除法法則計(jì)算,即可得到結(jié)果;
(2)利用異號(hào)兩數(shù)相加的法則:取絕對(duì)值較大數(shù)的符合,并用較大的絕對(duì)值減去較小的絕對(duì)值,即可得到結(jié)果;
(3)原式表示4個(gè)-
1
2
乘積的相反數(shù),即可得到結(jié)果;
(4)利用乘法分配律給括號(hào)中兩項(xiàng)都乘以12,計(jì)算后即可得到結(jié)果.
解答:解:(1)原式=
2
3
÷
2
3

=1;

(2)原式=-(7-5)
=-2;

(3)原式=-
1
24

=-
1
16
;

(4)原式=
1
3
×12-
1
2
×12
=4-6
=-2.
故答案為:(1)1;(2)-2;(3)-
1
16
;(4)-2.
點(diǎn)評(píng):此題考查了有理數(shù)的混合運(yùn)算,有理數(shù)的混合運(yùn)算首先弄清運(yùn)算順序,先乘方,再乘除,最后算加減,有括號(hào)先算括號(hào)里邊的,同級(jí)運(yùn)算從左到右依次進(jìn)行計(jì)算,然后利用各種運(yùn)算法則計(jì)算,有時(shí)可以利用運(yùn)算律來(lái)簡(jiǎn)化運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、在如圖的方格紙中,每個(gè)小正方形的邊長(zhǎng)都為1.
(1)畫(huà)出將△A1B1C1,沿直線(xiàn)DE方向向上平移5格得到的△A2B2C2;
(2)要使△A2B2C2與△CC1C2重合,則△A2B2C2繞點(diǎn)C2順時(shí)針?lè)较蛐D(zhuǎn),至少要旋轉(zhuǎn)多少度?(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A是直線(xiàn)CE上一點(diǎn),∠MAD是一個(gè)可以繞點(diǎn)A任意旋轉(zhuǎn)的60°角.
(1)如圖1所示,若∠BAC=90°,AM的反向延長(zhǎng)線(xiàn)AN平分∠BAE,求∠EAD的度數(shù)是多少?
(2)如圖2所示,若∠BAC=m°,(1)中其余條件不變,則∠EAD的度數(shù)是
 
;(直接寫(xiě)出答案)
精英家教網(wǎng)
(3)如圖3,若∠BAC=m°,將(1)中的“AN平分∠BAE”改為“∠NAB=90°”,則∠EAD的度數(shù)是
 
;(直接寫(xiě)出答案)
(4)在圖4畫(huà)出同樣滿(mǎn)足(3)的條件但不同于圖3的圖形,并求∠EAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),點(diǎn)C(0,6),BC∥OA,OB=10,點(diǎn)E從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度沿BC向點(diǎn)C運(yùn)動(dòng),點(diǎn)F從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度沿OB向點(diǎn)B運(yùn)動(dòng),現(xiàn)點(diǎn)E、F同時(shí)出發(fā),連接EF并延長(zhǎng)交OA于點(diǎn)D,當(dāng)F點(diǎn)到達(dá)B點(diǎn)時(shí),E、F兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒
(1)當(dāng)四邊形ABED是平行四邊形時(shí),求t的值;
(2)當(dāng)△BEF的面積最大時(shí),求t的值;
(3)當(dāng)以BE為直徑的圓經(jīng)過(guò)點(diǎn)F時(shí),求t的值;
(4)當(dāng)動(dòng)點(diǎn)E、F會(huì)同時(shí)在某個(gè)反比例函數(shù)的圖象上時(shí),求t的值.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示:直線(xiàn)MN⊥RS于點(diǎn)O,點(diǎn)B在射線(xiàn)OS上,OB=2,點(diǎn)C在射線(xiàn)ON上,OC=2,點(diǎn)E是射線(xiàn)OM上一動(dòng)點(diǎn),連接EB,過(guò)O作OP⊥EB于P,連接CP,過(guò)P作PF⊥PC交射線(xiàn)OS于F.

(1)求證:△POC∽△PBF.
(2)當(dāng)OE=1,OE=2時(shí),BF的長(zhǎng)分別為多少?當(dāng)OE=n時(shí),BF=
4
n
4
n

(3)當(dāng)OE=1時(shí),S△EBF=S1;OE=2時(shí),S△EBF=S2;…,OE=n時(shí),S△EBF=Sn.則S1+S2+…+Sn=
2n
2n
.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-4,n)和點(diǎn)B(2,-4)是反比例函數(shù)y=
m
x
的圖象和一次函數(shù)y=kx+b 的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求方程kx+b=
m
x
的解(請(qǐng)直接寫(xiě)出答案);
(3)求不等式kx+b>
m
x
的解集(請(qǐng)直接寫(xiě)出答案).

查看答案和解析>>

同步練習(xí)冊(cè)答案