【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,過點C作CEBD,且CE=BD.
(1)求證:四邊形OCED是矩形;
(2)連接AE交CD于點G,若AE⊥CD.
①求sin∠CAG的值;
②若菱形ABCD的邊長為6cm,點P為線段AE上一動點(不與點A重合),連接DP,一動點Q從點D出發(fā),以1cm/s的速度沿線段DP勻速運動到點P,再以cm/s的速度沿線段PA勻速運動到點A,到達點A后停止運動,當點Q沿上述路線運動到點A所需要的時間最短時,求AP的長和點Q走完全程所需的時間t.
【答案】(1)見解析;(2)① ;②
【解析】
(1)首先證明四邊形OCED是平行四邊形,再根據(jù)∠COD=90°推出是矩形.
(2)①由DE∥AC,DE=OC=OA,推出,設(shè)DG=m,則CG=2m,DC=AD=3m,求出AC即可解決問題.
②過點P作PT⊥AC于T.由sin∠PAT=,推出PT=PA,由點Q的運動時間t==PD+PT,根據(jù)垂線段最短可知,當D,P,T共線,且DT⊥AC時,PD+PT的值最小,最小值=線段OD的長.
(1)證明:∵四邊形ABCD是菱形,
∴AC⊥BD,OB=OD,
∵EC=BD,
∴EC=OD,
∵EC∥OD,
∴四邊形OCED是平行四邊形,
∵∠COD=90°,
∴四邊形OCED是矩形.
(2)解:①∵四邊形OCED是矩形,
∴DE∥AC,DE=OC=OA,
∴,設(shè)DG=m,則CG=2m,DC=AD=3m,
∵AE⊥CD,
∴∠AGD=∠AGC=90°,
∴AG=,
∴AC=,
∴sin∠CAG=.
②過點P作PT⊥AC于T.
∵sin∠PAT=,
∴PT=PA,
∵點Q的運動時間t==PD+PT,
根據(jù)垂線段最短可知,當D,P,T共線,且DT⊥AC時,PD+PT的值最小,最小值=線段OD的長,
由(2)可知3m=6,
m=2,
∴AC=,OA=,
∵∠AOD=90°,
∴OD=,
∵DE∥OA,
∴,
∴OP=PD=,此時AP=,
∴滿足條件的PA的值為,點Q走完全程所需的時間t=(s).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=5,點E在DC上,將矩形ABCD沿AE折疊,點D恰好落在BC邊上的點F處,那么sin∠EFC的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知A(0,1),B(10,1),C(9,4).
(1)在網(wǎng)格中畫出過A、B、C三點的圓和直線的圖像;
(2)已知P是直線上的點,且△APB是直角三角形,那么符合條件的點P共有 個;
(3)如果直線(k>0)上有且只有二個點Q與點A、點B兩點構(gòu)成直角△ABQ,則k= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線C1:y=x2+6x+2的頂點為M,與y軸相交于點N,先將拋物線C1沿x軸翻折,再向右平移p個單位長度后得到拋物線C2,直線l:y=kx+b經(jīng)過M,N兩點.
(1)求點M的坐標,并結(jié)合圖象直接寫出不等式x2+6x+2<kx+b的解集;
(2)若拋物線C2的頂點D與點M關(guān)于原點對稱,求p的值及拋物線C2的解析式;
(3)若拋物線C1與x軸的交點為E、F,試問四邊形EMBD是何種特殊四邊形?并說明其理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,AB=AC,D點為Rt△ABC外一點,且BD⊥CD,DF為∠BDA的平分線,當∠ACD=15°,下列結(jié)論:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D,其中正確的是( )
A.①③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在向貧困地區(qū)捐書活動中全體師生積極捐書.為了解所捐書籍的種類,某同學對部分書籍進行了抽樣調(diào)查,并根據(jù)調(diào)查數(shù)據(jù)繪制了如圖所示不完整統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下面問題:
(1)本次抽樣調(diào)查的書籍有多少本?請通過計算補全條形統(tǒng)計圖;
(2)求出圖中表示科普類書籍的扇形圓心角度數(shù);
(3)本次活動師生共捐書本,請估計有多少本文學類書籍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=30°,且BC=CA,將△ABC沿AC翻折至△AB′C,AB′交CD于點E,連接B′D.若AB=3,則B′D的長度為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點B在第一象限,BA⊥x軸于點A,反比例函數(shù)y=(x>0)的圖象與線段AB相交于點C,C是線段AB的中點,點C關(guān)于直線y=x的對稱點C'的坐標為(m,6)(m≠6),若△OAB的面積為12,則k的值為( 。
A.4B.6C.8D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E為CD的中點,連接AE并延長交BC的延長線于點F,連接BD交AF于H,AD=10,且tan∠EFC=,那么AH的長為( 。
A. B. C. 10D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com