如圖所示,邊長(zhǎng)為2的等邊三角形OAB的頂點(diǎn)A在x軸的正半軸上,B點(diǎn)位于第一象限,將△OAB繞O點(diǎn)順時(shí)針旋轉(zhuǎn)30°后,恰好A點(diǎn)在雙曲線y=(x>0)上.
(1)求雙曲線y=(x>0)的解析式;
(2)等邊三角形OAB繼續(xù)按順時(shí)針?lè)较蛐D(zhuǎn)多少度后,A點(diǎn)再次落在雙曲線上?

【答案】分析:(1)在Rt△AOD中,OA=2,∠AOD=30°,就可以求出OD,AD的長(zhǎng)度,就得到A點(diǎn)的坐標(biāo),代入雙曲線y=(x>0)就可以求出函數(shù)的解析式;
(2)作出函數(shù)的圖象,根據(jù)圖象就可以得到.然后進(jìn)行驗(yàn)證即可.
解答:解:(1)如圖所示,
OA=2,∠AOD=30°,
在Rt△AOD中,
∴OD=OA•cos30°=2×=,
AD=OA•sin30°=2×=1.
∴A(,-1),
把x=,y=-1代入y=,
∴k=-
∴雙曲線的解析式為y=-(x>0);

(2)猜想等邊三角形OAB繼續(xù)按順時(shí)針?lè)较蛐D(zhuǎn)30°后,A點(diǎn)再次落在雙曲線上,
如圖,此時(shí)A(1,-),代入y=-滿足,
故猜想正確.
點(diǎn)評(píng):本題通過(guò)反比例函數(shù)的知識(shí),考查學(xué)生的猜想探究能力.解題時(shí)先直觀地猜想,再按照從特殊到一般的方法去驗(yàn)證.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點(diǎn)上,則∠AED的正切值等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點(diǎn)上,則tan∠AED的值等于( 。
A、
1
2
B、
1
3
C、
2
3
D、
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,邊長(zhǎng)為2的等邊三角形OBA的頂點(diǎn)A在x軸的正半軸上,B點(diǎn)位于第一象限.精英家教網(wǎng)將△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后,得到△OB′A′,點(diǎn)A′恰好落在雙曲線y=
k
x
(k≠0)上.
(1)在圖中畫出△OB′A′;
(2)求雙曲線y=
k
x
(k≠0)的解析式;
(3)等邊三角形OB′A′繞著點(diǎn)O繼續(xù)按順時(shí)針?lè)较蛐D(zhuǎn)
 
度后,A′點(diǎn)再次落在雙曲線上?( 直接將答案填寫在橫線上即可,不需要說(shuō)明理由 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、高為50cm,底面周長(zhǎng)為50cm的圓柱,在此圓柱的側(cè)面上劃分(如圖所示)邊長(zhǎng)為lcm的正方形,用四個(gè)邊長(zhǎng)為lcm的小正方形構(gòu)成“T”字形,用此圖形是否能拼成圓柱側(cè)面?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,邊長(zhǎng)為1 的正方形網(wǎng)格中有格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和格點(diǎn)O,若把△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°.
(1)在網(wǎng)格中畫出△ABC旋轉(zhuǎn)后的圖形;
(2)求點(diǎn)C在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案