證明:兩條平行線被第三條直線所截,一組同旁內(nèi)角的平分線互相垂直.(畫出圖形,寫出已知、求證、并證明)
已知:如圖,直線AB、CD被EF截于M、N兩點(diǎn),AB∥CD,
MG平分∠BMN,NG平分∠DNM.
求證:MG⊥NG
證明:∵AB∥CD(已知)
∴∠BMN+∠DNM=180°(________)
∵M(jìn)G平分∠BMN,NG平分∠DNM (已知)
∴∠GMN=數(shù)學(xué)公式∠BMN,∠GNM=數(shù)學(xué)公式∠DNM(________)
∴∠GMN+∠GNM=數(shù)學(xué)公式(∠BMN+∠DNM)=數(shù)學(xué)公式×180°=90°(等式性質(zhì))
又在△GMN中,有∠GMN+∠GNM+∠G=180°(________)
∴∠G=180°-(∠GMN+∠GNM)=180°-90°=90°(等式性質(zhì))
∴MG⊥NG(________)

兩直線平行,同旁內(nèi)角互補(bǔ)    角平分線的定義    三角形內(nèi)角和定理    垂直的性質(zhì)
分析:分別根據(jù)平行線及角平分線的性質(zhì)、三角形內(nèi)角和定理及兩直線垂直的判定定理解答即可.
解答:根據(jù)證明的步驟可依次填寫:
兩直線平行,同旁內(nèi)角互補(bǔ);
角平分線的性質(zhì);
三角形內(nèi)角和定理;
垂直的性質(zhì).
點(diǎn)評(píng):本題貌似復(fù)雜,實(shí)屬較簡(jiǎn)單題目.考查的是平行線及角平分線的性質(zhì)、三角形內(nèi)角和定理及兩直線垂直的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

證明:兩條平行線被第三條直線所截,一組同位角的角平分線互相平行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

證明:兩條平行線被第三條直線所截,一組同旁內(nèi)角的平分線互相垂直.(畫出圖形,寫出已知、求證、并證明)
已知:如圖,直線AB、CD被EF截于M、N兩點(diǎn),AB∥CD,精英家教網(wǎng)
MG平分∠BMN,NG平分∠DNM.
求證:MG⊥NG
證明:∵AB∥CD(已知)
∴∠BMN+∠DNM=180°(
 

∵M(jìn)G平分∠BMN,NG平分∠DNM (已知)
∴∠GMN=
1
2
∠BMN,∠GNM=
1
2
∠DNM(
 

∴∠GMN+∠GNM=
1
2
(∠BMN+∠DNM)=
1
2
×180°=90°(等式性質(zhì))
又在△GMN中,有∠GMN+∠GNM+∠G=180°(
 

∴∠G=180°-(∠GMN+∠GNM)=180°-90°=90°(等式性質(zhì))
∴MG⊥NG(
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

證明:兩條平行線被第三條直線所截,一組同位角的角平分線互相平行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

證明:兩條平行線被第三條直線所截,則它們的一對(duì)同位角的平分線互相平行。(要求畫圖,寫出已知、求證、證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案