已知,如圖,AB∥CD,∠1=∠B,∠2=∠D.求證:BE⊥DE.

證明:過E點作EF∥AB,則∠B=∠3,
又∵∠1=∠B,
∴∠1=∠3.
∵AB∥EF,AB∥CD,
∴EF∥CD,
∴∠4=∠D,
又∵∠2=∠D,
∴∠2=∠4,
∵∠1+∠2+∠3+∠4=180°,
∴∠3+∠4=90°即∠BED=90°,
∴BE⊥ED.
分析:過E點作EF∥AB,根據(jù)平行線的性質(zhì)得出∠B=∠3,結(jié)合已知條件∠1=∠B得出∠1=∠3.根據(jù)平行于同一直線的兩直線平行得出EF∥CD,由平行線的性質(zhì)及已知條件∠2=∠D得出∠2=∠4,再根據(jù)平角的定義得出∠1+∠2+∠3+∠4=180°,則∠BED=90°.
點評:本題考查了平行線的判定與性質(zhì),垂線的定義,平角的定義,難度適中,正確作出輔助線是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、已知:如圖,AB、AC分別切⊙O于B、C,D是⊙O上一點,∠D=40°,則∠A的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB,CD相交于點O,且OA•OD=OB•OC,求證:AC∥DB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過點C的⊙O的切線,AD⊥EF于點D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

29、已知,如圖,AB∥CD,∠EAB+∠FDC=180°.求證:AE∥FD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB=AC,DB=DC,求證:∠B=∠C.

查看答案和解析>>

同步練習冊答案