如圖,在菱形ABCD中,∠C=60°,AB=4,過點B作BE⊥CD,垂足為E,連結(jié)AE.F為AE上一點,且∠BFE=60°.

(1)求證:△ABF∽△EAD;
(2)求BF的長.
(1)因為四邊形ABCD為菱形,∠C=60°,所以∠D=120°
因為∠BFE=60°所以∠BFA=∠D=120°
因為AB∥DC,所以∠BAF=∠AED,
所以△ABF∽△EAD;……………4分
(2):∵BE⊥CD,
∴△BEC為Rt△.
∵AB=BC=4,∠C=60°,
∴EC=2
BE==
:∵BE⊥CD,AB∥DC,
∴EB⊥AB.
∴△ABE為Rt△.
AE==
∵△ABF∽△EAD,
∴AB /AE ="BF/" AD .
∴BF=…………………8分解析:
根據(jù)菱形的性質(zhì)及相似三角形的判定方法得到△ABF∽△EAD,再根據(jù)相似三角形的邊對應(yīng)成比例即可求得BF的長
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點,P為對角線BD上任意一點,AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時,四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊答案