【題目】如圖,在中,,點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間是.過點(diǎn)于點(diǎn)連結(jié)

1)求證:

2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值,如果不能,說明理由;

3)當(dāng)為何值時(shí),為直角三角形?請(qǐng)說明理由.

【答案】1)證明見解析;(2)能,;(3.理由見解析.

【解析】

1)根據(jù)30°所對(duì)的直角邊是斜邊的一半即可求出,從而證出結(jié)論;

2)根據(jù)平行四邊形的判定定理可證四邊形是平行四邊形,然后根據(jù)菱形的定義可得當(dāng)時(shí),四邊形是菱形,然后列出方程即可求出結(jié)論;

3)根據(jù)直角三角形的直角分類討論,分別畫出對(duì)應(yīng)的圖形,根據(jù)平行四邊形的性質(zhì)、30°所對(duì)的直角邊是斜邊的一半即可分別求出結(jié)論.

證明:

中,,

四邊形是平行四邊形.

當(dāng)時(shí),四邊形是菱形,

,

解得

當(dāng)時(shí),四邊形能夠成為菱形.

解:①當(dāng)時(shí),

解得

②當(dāng)時(shí),

四邊形是平行四邊形,

是直角三角形.

解得;

③當(dāng)∠DFE=90°時(shí),此時(shí)點(diǎn)E和點(diǎn)B重合,但,點(diǎn)E與點(diǎn)B不重合,故此種情況不存在.

綜上所述:

當(dāng)時(shí),為直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了對(duì)一顆傾斜的古杉樹AB進(jìn)行保護(hù),需測(cè)量其長(zhǎng)度:在地面上選取一點(diǎn)C,測(cè)得∠ACB=45°,AC=24m,∠BAC=66.5°,(參考數(shù)據(jù): ≈1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30).則這顆古杉樹AB的長(zhǎng)約為(
A.7.27
B.16.70
C.17.70
D.18.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用960元購(gòu)進(jìn)一批服裝,并以每件46元的價(jià)格全部售完,由于服裝暢銷,服裝店又用2220元,再次以比第一次進(jìn)價(jià)多5元的價(jià)格購(gòu)進(jìn)服裝,數(shù)量是第一次購(gòu)進(jìn)服裝的2倍,仍以每件46元的價(jià)格出售,賣了部分后,為了加快資金周轉(zhuǎn),服裝店將剩余的20件以售價(jià)的九折全部出售.問:

1)該服裝店第一次購(gòu)買了此種服裝多少件?

2)兩次出售服裝共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,邊長(zhǎng)為的等邊三角形的頂點(diǎn)分別在上,下列結(jié)論:,其中正確的序號(hào)是(  )

A.①②④B.①②C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為矩形的對(duì)角線,將邊沿折疊,使點(diǎn)落在上的點(diǎn)處,將邊沿折疊,使點(diǎn)落在上的點(diǎn)處.

1)求證:四邊形是平行四邊形;

2)若求四邊形的面積及之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組做用頻率估計(jì)概率的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( )

A.石頭、剪刀、布的游戲中,小明隨機(jī)出的是剪刀

B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

C.暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球

D.擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于點(diǎn)A1,

1)分別計(jì)算:當(dāng)∠A分別為700、800時(shí),求∠A1的度數(shù).

2)根據(jù)(1)中的計(jì)算結(jié)果,寫出∠A與∠A1之間的數(shù)量關(guān)系___________________.

3)∠A1BC的角平分線與∠A1CD的角平分線交于點(diǎn)A2,∠A2BC的角平分線與∠A2CD的角平分線交于點(diǎn)A3,如此繼續(xù)下去可得A4,,∠An,請(qǐng)寫出∠A5與∠A的數(shù)量關(guān)系_________________.

4)如圖2,若EBA延長(zhǎng)線上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動(dòng)時(shí),有下面兩個(gè)結(jié)論:①∠Q+A1的值為定值;②∠D-A1的值為定值.

其中有且只有一個(gè)是正確的,請(qǐng)寫出正確的結(jié)論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解答過程:如圖甲,ABCD,探索∠APC與∠BAP、∠PCD之間的關(guān)系.

解:過點(diǎn)PPEAB

ABCD,

PEABCD(平行于同一條直線的兩條直線互相平行).

∴∠1+A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),

2+C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).

∴∠1+A+2+C=360°.

又∵∠APC=1+2

∴∠APC+A+C=360°.

如圖乙和圖丙,ABCD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠APC與∠BAP、∠PCD之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,AB =24 cm,射線AGBC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG3cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC5cm/s的速度運(yùn)動(dòng),設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間為ts).

1)當(dāng)點(diǎn)F在線段BC上運(yùn)動(dòng)時(shí),CF= cm,當(dāng)點(diǎn)F在線段BC的延長(zhǎng)線上運(yùn)動(dòng)時(shí),CF= cm(請(qǐng)用含t的式子表示);

2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)以點(diǎn)A,C,EF為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值;

3)當(dāng)t = s時(shí),E,F兩點(diǎn)間的距離最。

查看答案和解析>>

同步練習(xí)冊(cè)答案