如圖,在圓外切凸六邊形ABCDEF中,AB∥DE,BC∥EF,CD∥FA.求證:凸六邊形ABCDEF是中心對稱圖形.

解:如圖,
∵CD∥AF,AB與AF相交,
∴延長AB、CD后必相交,交點(diǎn)為Q,類似的交點(diǎn)P、S,令X、Y、Z為3個切點(diǎn),
∵BC∥EF,CD∥FA,
∴∠P=∠QBC,∠Q=∠PAF,
∴△PAF∽△BQC,
同理可得,△PAF∽△BQC∽△EDS∽△PQS,它們的周長依次記為m1、m2、m3、m,
易證m1+m2+m3=(PX+PZ)+(QX+QY)+(SY+SZ)=PQ+QS+SP=m,
此時,1=++=++,則=1-=1-=,
∴AF=CD,
又∵AF∥CD,
∴AD、CF必互相平分,
∴AD、BE、CF三線共點(diǎn),令該點(diǎn)為O,顯然點(diǎn)O是圓心,且是凸六邊形ABCDEF的對稱中心.
分析:先延長AB、CD后必相交,交點(diǎn)為Q,類似的交點(diǎn)P、S,再根據(jù)AB∥DE,BC∥EF,CD∥FA可得,△PAF∽△BQC∽△EDS∽△PQS,它們的周長依次記為m1、m2、m3、m,再由相似三角形周長的比等于相似比可求出AF=CD,再由平行線的性質(zhì)可得AD、CF必互相平分且AD、BE、CF三線共點(diǎn),則其交點(diǎn)必為六邊形的對稱中心.
點(diǎn)評:本題考查的是正多邊形和圓、中心對稱圖形、相似三角形的判定與性質(zhì),涉及面較廣,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,兩圓外切,小圓的直徑是3cm,大圓的直徑均是5cm,現(xiàn)在將它向右推動4cm,兩圓向右掃過部分(圖中陰影部分)的面積是
32cm2
32cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考數(shù)學(xué)專項(xiàng)練習(xí) 題型:013

如圖,兩圓外切于M點(diǎn),過點(diǎn)M的直線AB、CD分別與兩圓相交于A、B、C、D,則

[  ]

A.AM·DM=BM·CM
B.AM·BM=CM·DM
C.DM·BD=CM·AC
D.BM·BD=AM·AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

已知:如圖,兩圓外切于C,AB為外公切線,A,B

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河南省中招考試說明解密預(yù)測數(shù)學(xué)試卷(三)(解析版) 題型:填空題

如圖,兩圓外切,小圓的直徑是3cm,大圓的直徑均是5cm,現(xiàn)在將它向右推動4cm,兩圓向右掃過部分(圖中陰影部分)的面積是   

查看答案和解析>>

同步練習(xí)冊答案