如圖,點(diǎn)C、F在BE上,∠ 1=∠ 2,BC=EF,請(qǐng)補(bǔ)充條件 ,使⊿ ABC≌⊿ DEF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知AB=DC,AD=BC,E,F在DB上兩點(diǎn)且BF=DE,若∠AEB=120°,
∠ADB=30°,則∠BCF= ( 。
A.150° B.40° C.80° D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,已知∠AOB=50°,OM平分∠AOB,MA⊥OA于A,MB⊥OB于B,則
∠MAB的度數(shù)為( )
A. 50° B. 40° C. 35° D. 25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中完成下列各題:
(1)在圖中作出關(guān)于軸對(duì)稱的.
(2)在x軸上畫出點(diǎn)P,使PA+PB的值最小。
(3)在x軸上畫出點(diǎn)Q,使Q B1 +Q C的值最小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
數(shù)學(xué)課上,李老師出示了如下框中的題目.
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1) 特殊情況•探索結(jié)論:當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的
DB大小關(guān)系.請(qǐng)你直接寫出結(jié)論:AE DB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).理由
如下:如圖2,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F,(請(qǐng)你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計(jì)新題
在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若△ ABC
的邊長為1,AE=2,求CD的長(請(qǐng)你直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠B與∠C的平分線交于點(diǎn)O,過點(diǎn)O作DE∥BC,分別交AB、AC于點(diǎn)D、E.若AB=5,AC=4,則△ADE的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1) 求證:四邊形AECF是平行四邊形;
(2) 若AE=BE,∠BAC=90°,試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com