如圖所示,已知正方形ABCD的對角線交于O點,O是正方形A′B′C′O ′的一個頂點,兩個正方形的邊長都為a,若正方形A′B′C′O繞點O任意轉(zhuǎn)動. 試觀察其重疊部分 OEBF的面積有無變化,請說明理由;若無變化,求出四邊形OEBF的面積.

 

解:其重疊部分OEBF的面積無變化.∵四邊形ABCD為正方形,

∴OA=OB, AC ⊥BD,∠OAE=∠OBF=45°.

∵四邊形A′B′C′O為正方形,

∴∠C′OA′=90°,

即∠BOF+∠BOE=90°.

    又∵∠AOE+∠BOE=90°,

∴∠BOF=∠AOE.在△OAE和△OBF中,

OA=OB,∠OAE=∠OBF=45°,

∠AOE=∠BOF

∴△AOE≌△BOF,∴S△AOE=S△BOF.

∴S△AOE+S△OBE=S△BOF+S△OBE,

即S△AOB=S四邊形OEBF.

    ∵S△AOB=OA·OB=.

    ∴S四邊形OEBF=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

33、如圖所示,已知正方形ABCD,延長CB至E,連接AE,過點A作AF⊥AE交DC于F.
求證:△ADF≌△ABE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖所示,已知正方形ABCD,E為BC上任意一點,延長AB至F,使BF=BE,AE的延長線交CF于G,
試說明:(1)AE=CF;(2)AG⊥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•尤溪縣質(zhì)檢)如圖所示,已知正方形ABCD的邊長為4,E是BC邊上的一個動點,AE⊥EF,EF交DC于點F,設(shè)BE=x,F(xiàn)C=y,則當(dāng)點E從點B運(yùn)動到點C時,y關(guān)于x的函數(shù)圖象是
(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知正方形ABCD的面積是8平方厘米,正方形EFGH的面積是62平方厘米,BC落在EH上,△ACG的面積是4.9平方厘米,則△ABE的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知正方形OABC的面積為9,點B在函數(shù)y=
k
x
(k>0,x>0)
的圖象上,點P(m,n)(6≤m≤9)是函數(shù)y=
k
x
(k>0,x>0)
的圖象上動點,過點P分別作x軸、y軸的垂線,垂足分別為E、F,若設(shè)矩形OEPF和正方形OABC不重合的兩部分的面積和為S.
(1)求B點坐標(biāo)和k的值;
(2)寫出S關(guān)于m的函數(shù)關(guān)系和S的最大值.

查看答案和解析>>

同步練習(xí)冊答案