【題目】已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為 .
【答案】(2,4)或(3,4)或(8,4)
【解析】解:當(dāng)OD=PD(P在右邊)時(shí),根據(jù)題意畫出圖形,如圖所示:
過(guò)P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD= OA=5,
根據(jù)勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,則P1(8,4);
當(dāng)PD=OD(P在左邊)時(shí),根據(jù)題意畫出圖形,如圖所示:
過(guò)P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,
根據(jù)勾股定理得:QD=3,故OQ=OD﹣QD=5﹣3=2,則P2(2,4);
當(dāng)PO=OD時(shí),根據(jù)題意畫出圖形,如圖所示:
過(guò)P作PQ⊥x軸交x軸于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,
根據(jù)勾股定理得:OQ=3,則P3(3,4),
綜上,滿足題意的P坐標(biāo)為(2,4)或(3,4)或(8,4).
所以答案是:(2,4)或(3,4)或(8,4)
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)和勾股定理的概念的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四個(gè)數(shù):a= b=- (-3) , c= -(-1)2019, d= .
(1) 化簡(jiǎn)a,b,c,d 得a= ,b= ,c= ,d= ;
(2) 把這四個(gè)數(shù)在數(shù)軸上分別表示出來(lái):
(3)用“<”把 a,b,c,d 連接起來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為點(diǎn)D,連接AD,BD,其中BD交直線AP于點(diǎn)E.
(1)依題意補(bǔ)全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);
(3)連結(jié)CE,寫出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)E是AC的中點(diǎn),AC=2AB,∠BAC的平分線AD交BC于點(diǎn)D,作AF∥BC,連接DE并延長(zhǎng)交AF于點(diǎn)F,連接FC.
求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)分別在軸正半軸和軸正半軸上,且,點(diǎn)從原點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度沿x軸正半軸方向運(yùn)動(dòng).
(1)求點(diǎn)的坐標(biāo).
(2)連接設(shè)三角形的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為,請(qǐng)用含的式子表示并直接寫出的取值范圍.
(3)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),將線段沿軸正方向平移,使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接,將線段沿軸正方向平移,使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),取的中點(diǎn)是否存在的值,使三角形的面積等于三角形的面積?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營(yíng)養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對(duì)不同口味牛奶的喜好,對(duì)全校訂購(gòu)牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:
(1)本次被調(diào)查的學(xué)生有名;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購(gòu)了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購(gòu)牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明同學(xué)化簡(jiǎn)代數(shù)式a+2+ 的過(guò)程,請(qǐng)仔細(xì)閱讀并解答所提出的問(wèn)題. a+2+ =2+a+ …第一步
=(2+a)(2﹣a)+a2…第二步
=2﹣a2+a2…第三步
=2…第四步
(1)小明的解法從第步開始出現(xiàn)錯(cuò)誤,正確的化簡(jiǎn)結(jié)果是;
(2)原代數(shù)式的值能等于2嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是ABCD的邊CD的中點(diǎn),延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com