如圖1,Rt△ABC中,∠ABC=90°,BC<AB<2BC.在AB邊上取一點M,使AM=BC,過點A作AE⊥AB且AE=BM,連接EC,再過點A作AN∥EC,交直線CM、CB于點F、N.
(1)證明:∠AFM=45°;
(2)若將題中的條件“BC<AB<2BC”改為“AB>2BC”,其他條件不變,請你在圖2的位置上畫出圖形,(1)中的結論是否仍然成立?如果成立,請說明理由;如果不成立,請猜想∠AFM的度數(shù),并說明理由.

證明:(1)連接EM.
∵AE⊥AB,∴∠EAM=∠B=90°.
∵AE=MB,AM=CB,
∴△AEM≌△BMC.
∴∠AEM=∠BMC,EM=MC.
∵∠AEM+∠AME=90°,
∴∠BMC+∠AME=90.
∴∠EMC=90°.
∴△EMC是等腰直角三角形.
∴∠MCE=45°
∵AN∥CE,
∴∠AFM=∠MCE=45°.

解:(2)畫出圖②
不成立.∠AFM=135°.
連接ME.
前半部分證明方法與(1)同.
∴∠MCE=45°.
∵AN∥CE,∴∠AFM+∠MCE=180°.
∴∠AFM=135°.
分析:(1)連接EM,根據(jù)AE⊥AB,AE=MB,AM=CB,可求出△AEM≌△BMC;根據(jù)直角三角形的性質可知△EMC是等腰直角三角形;再結合平行線的性質可知∠AFM=45度.
(2)根據(jù)題意畫出圖形,再用(1)中方法證明∠AFM=45°不成立.
點評:本題比較復雜,解答此題的關鍵是先畫出圖形作出輔助線,然后結合全等三角形、等腰三角形及平行線的性質解答,有一定難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•和平區(qū)二模)如圖,在Rt△ABC中,∠BAC=90°,AB=6,AM為∠BAC的平分線,CM=2BM.下列結論:
①tan∠MAC=
2
2
;②點M到AB的距離是4;③
AC
CM
=
BC
CA
;④∠B=2∠C;⑤
CM
AB
=
2
,
其中不正確結論的序號是
①③④⑤
①③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義)如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,E為BC邊上的一點,以A為圓心,AE為半徑的圓弧交AB于點D,交AC的延長于點F,若圖中兩個陰影部分的面積相等,則AF的長為
2
π
π
2
π
π
(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=9cm,則AB的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于點D,DE⊥DB交AB于點E,設⊙O是△BDE的外接圓.
(1)求證:AC是⊙O的切線;
(2)若DE=2,BD=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)如圖,在Rt△ABC中,∠ACB=90°,點D在AC邊上,且BC2=CD•CA.
(1)求證:∠A=∠CBD;
(2)當∠A=α,BC=2時,求AD的長(用含α的銳角三角比表示).

查看答案和解析>>

同步練習冊答案