分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠ACB=90°、∠BAC=30°,EF⊥AB,垂足為F,連接DF、CF.

(1)試說明AC=EF;

(2)求證:四邊形ADFE是平行四邊形;

(3)找出圖中除△ACD、△ABE以外的等邊三角形,并說明理由.

 

【答案】

(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因為△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可證明△AFE≌△BCA,再根據(jù)全等三角形的性質即可證明AC=EF;(2)根據(jù)(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據(jù)平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形;(3)△CBF為等邊三角形

【解析】

試題分析:(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因為△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可證明△AFE≌△BCA,再根據(jù)全等三角形的性質即可證明AC=EF;

(2)根據(jù)(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據(jù)平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形;

(3)先證得BC=BF,∠CBF=60°,即可證得△CBF為等邊三角形.

(1)∵Rt△ABC中,∠BAC=30°,

∴AB=2BC,

又∵△ABE是等邊三角形,EF⊥AB,

∴AB=2AF

∴AF=CB,

∴△AFE≌△BCA(HL),

∴AC=EF;

(2)由(1)知道AC=EF,

而△ACD是等邊三角形,

∴∠DAC=60°

∴EF=AC=AD,且AD⊥AB,

而EF⊥AB,

∴EF∥AD,

∴四邊形ADFE是平行四邊形;

(3)由(1)(2)得BC=BF,∠CBF=60°

∴△CBF為等邊三角形.

考點:等邊三角形的性質,全等三角形的判定和性質,平行四邊形的判定和性質

點評:全等三角形的判定和性質是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,若分別以Rt△ABC的三邊為邊長作正方形的面積分別是S1,S2,S3,其中∠BCA=90°,則可推得它們滿足的關系式是S1+S2=S3.若分別以Rt△ABC的三邊為邊長作正三角形的面積分別是S4,S5,S6,那么S4,S5,S6滿足的關系式是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點,連接DF、EF、DE,EF與AC交于點O,DE與AB交于點G,連接OG,若∠BAC=30°,下列結論:①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG與△EOG的面積比為1:4.
其中正確結論的個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB中點,連接DF、EF,DE、EF與AC交于點O,DE與AB交于點G,連接OG,若∠BAC=30°,下列結論:①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG與△EOG的面積比為1:4.其中正確的結論的序號是
①③④
①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,分別以Rt△ABC的三邊為邊向外作三個正方形,其面積分別用S1、S2、S3表示,請寫出S1、S2、S3之間的關系,并說明理由.

查看答案和解析>>

同步練習冊答案