如圖,以O(shè)為圓心的弧度數(shù)為60°,∠BOE=45°,DA⊥OB,EB⊥OB.
(1)求的值;
(2)若OE與交于點M,OC平分∠BOE,連接CM.說明CM為⊙O的切線;
(3)在(2)的條件下,若BC=1,求tan∠BCO的值.
【考點】切線的判定;全等三角形的判定與性質(zhì);勾股定理;解直角三角形.
【分析】(1)求出OB=BE,在Rt△OAD中,sin∠AOD==,代入求出即可;
(2)求出∠BOC=∠MOC,證△BOC≌△MOC,推出∠CMO=∠OBC=90°,根據(jù)切線的判定推出即可;
(3)求出CM=ME,MC=BC,求出BC=MC=ME=1,在Rt△MCE中,根據(jù)勾股定理求出CE=,求出OB=+1,解直角三角形得出tan∠BCO=+1,即可得出答案.
【解答】解:(1)∵EB⊥OB,∠BOE=45°,
∴∠E=45°,
∴∠E=∠BOE,
∴OB=BE,
在Rt△OAD中,sin∠AOD==,
∵OD=OB=BE,
∴==;
(2)∵OC平分∠BOE,
∴∠BOC=∠MOC,
在△BOC和△MOC中,
∴△BOC≌△MOC(SAS),
∴∠CMO=∠OBC=90°,
又∵CM過半徑OM的外端,
∴CM為⊙O的切線;
(3)由(1)(2)證明知∠E=45°,OB=BE,△BOC≌△MOC,CM⊥ME,
∵CM⊥OE,∠E=45°,
∴∠MCE=∠E=45°,
∴CM=ME,
又∵△BOC≌△MOC,
∴MC=BC,
∴BC=MC=ME=1,
∵MC=ME=1,
∴在Rt△MCE中,根據(jù)勾股定理,得CE=,
∴OB=BE=+1,
∵tan∠BCO=,OB=+1,BC=1,
∴tan∠BCO=+1.
【點評】本題考查了切線的性質(zhì)和判定,全等三角形的性質(zhì)和判定,勾股定理,切線長定理等知識點的應(yīng)用,綜合性比較強,難度偏大.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=ax2與直線y=bx+c的兩個交點坐標(biāo)分別為A(﹣2,4),B(1,1),則關(guān)于x的方程ax2﹣bx﹣c=0的解為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com