(1998•杭州)如圖,P是⊙O外一點,割線PO與⊙O相交于A、B,切線PC與⊙O相切于C,若PA=2,PC=3,則⊙O的半徑為( )
【答案】分析:根據(jù)切線長定理得PC2=PA•PB可求得PB,AB的長,從而可得到半徑的長.
解答:解:∵PC2=PA•PB,PA=2,PC=3,
∴PB=,
∴AB=,
∴圓的半徑是
故選D.
點評:此題主要是運用了切割線定理,注意最后需要求得圓的半徑.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:1998年全國中考數(shù)學試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1998•杭州)如圖所示的拋物線是的圖象經平移而得到的,此時拋物線過點A(1,0)和x軸上點A右側的點B,頂點為P.
(1)當∠APB=90°時,求點P的坐標及拋物線的解析式;
(2)求上述拋物線所對應的二次函數(shù)在0<x≤7時的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:1998年浙江省杭州市中考數(shù)學試卷 題型:解答題

(1998•杭州)如圖所示的拋物線是的圖象經平移而得到的,此時拋物線過點A(1,0)和x軸上點A右側的點B,頂點為P.
(1)當∠APB=90°時,求點P的坐標及拋物線的解析式;
(2)求上述拋物線所對應的二次函數(shù)在0<x≤7時的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:1998年全國中考數(shù)學試題匯編《圖形的相似》(01)(解析版) 題型:填空題

(1998•杭州)如圖所示,在△ABC中,∠A=90°,以A為圓心,AB為半徑的圓分別交BC、AC于其內部的點D、E,若BD=10,DC=6,則AC2=   

查看答案和解析>>

科目:初中數(shù)學 來源:1998年全國中考數(shù)學試題匯編《圓》(03)(解析版) 題型:解答題

(1998•杭州)如圖,已知⊙O1,與⊙O2外切于點P,過⊙O1上的一點B作⊙O1的切線交⊙O2于點C、D,直線BP交⊙O2于點A,連接DP,DA,
(1)求證:△ABD∽△ADP;
(2)若AD=,BP=3,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:1998年全國中考數(shù)學試題匯編《圓》(03)(解析版) 題型:解答題

(1998•杭州)如圖,PA、PB分別切⊙O于A、B,連接PO與⊙O相交于C,連接AC、BC,求證:AC=BC.

查看答案和解析>>

同步練習冊答案