【題目】如圖1,地面BD上兩根等長立柱AB,CD之間懸掛一根近似成拋物線y= x2﹣ x+3的繩子.
(1)求繩子最低點離地面的距離;
(2)因實際需要,在離AB為3米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點距MN為1米,離地面1.8米,求MN的長;
(3)將立柱MN的長度提升為3米,通過調整MN的位置,使拋物線F2對應函數(shù)的二次項系數(shù)始終為 ,設MN離AB的距離為m,拋物線F2的頂點離地面距離為k,當2≤k≤2.5時,求m的取值范圍.
【答案】
(1)
解:∵a= >0,
∴拋物線頂點為最低點,
∵y= x2﹣ x+3= (x﹣4)2+ ,
∴繩子最低點離地面的距離為: m
(2)
解:由(1)可知,BD=8,
令x=0得y=3,
∴A(0,3),C(8,3),
由題意可得:拋物線F1的頂點坐標為:(2,1.8),
設F1的解析式為:y=a(x﹣2)2+1.8,
將(0,3)代入得:4a+1.8=3,
解得:a=0.3,
∴拋物線F1為:y=0.3(x﹣2)2+1.8,
當x=3時,y=0.3×1+1.8=2.1,
∴MN的長度為:2.1m
(3)
解:∵MN=DC=3,
∴根據(jù)拋物線的對稱性可知拋物線F2的頂點在ND的垂直平分線上,
∴拋物線F2的頂點坐標為:( m+4,k),
∴拋物線F2的解析式為:y= (x﹣ m﹣4)2+k,
把C(8,3)代入得: (4﹣ m﹣4)2+k=3,
解得:k=﹣ (4﹣ m)2+3,
∴k=﹣ (m﹣8)2+3,
∴k是關于m的二次函數(shù),
又∵由已知m<8,在對稱軸的左側,
∴k隨m的增大而增大,
∴當k=2時,﹣ (m﹣8)2+3=2,
解得:m1=4,m2=12(不符合題意,舍去),
當k=2.5時,﹣ (m﹣8)2+3=2.5,
解得:m18﹣2 4,m2=8+2 (不符合題意,舍去),
∴m的取值范圍是:4≤m≤8﹣2
【解析】(1)直接利用配方法求出二次函數(shù)最值得出答案;(2)利用頂點式求出拋物線F1的解析式,進而得出x=3時,y的值,進而得出MN的長;(3)根據(jù)題意得出拋物線F2的解析式,得出k的值,進而得出m的取值范圍.此題主要考查了二次函數(shù)的應用以及頂點式求二次函數(shù)解析式等知識,正確表示出函數(shù)解析式是解題關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣2x+4與坐標軸分別交于C、B兩點,過點C作CD⊥x軸,點P是x軸下方直線CD上的一點,且△OCP與△OBC相似,求過點P的雙曲線解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,二次函數(shù)y= x2﹣2x+1的圖象與一次函數(shù)y=kx+b(k≠0)的圖象交于A,B兩點,點A的坐標為(0,1),點B在第一象限內,點C是二次函數(shù)圖象的頂點,點M是一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點,過點B作軸的垂線,垂足為N,且S△AMO:S四邊形AONB=1:48.
(1)求直線AB和直線BC的解析式;
(2)點P是線段AB上一點,點D是線段BC上一點,PD∥x軸,射線PD與拋物線交于點G,過點P作PE⊥x軸于點E,PF⊥BC于點F.當PF與PE的乘積最大時,在線段AB上找一點H(不與點A,點B重合),使GH+ BH的值最小,求點H的坐標和GH+ BH的最小值;
(3)如圖2,直線AB上有一點K(3,4),將二次函數(shù)y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點A,點C的對應點分別為點A′,點C′;當△A′C′K′是直角三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點分別是軸上位于原點兩側的兩點,點在第一象限,直線 交軸于點,直線交軸于點,.
(1)求;
(2)求點的坐標及的值;
(3)若,求直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,點M,N在同一個正比例函數(shù)圖象上的是( 。
A.M(2,﹣3),N(﹣4,6)
B.M(﹣2,3),N(4,6)
C.M(﹣2,﹣3),N(4,﹣6)
D.M(2,3),N(﹣4,6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣6x+(2m+1)=0有實數(shù)根.
(1)求m的取值范圍;
(2)如果方程的兩個實數(shù)根為x1 , x2 , 且2x1x2+x1+x2≥20,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習完“利用三角函數(shù)測高”這節(jié)內容之后,某興趣小組開展了測量學校旗桿高度的實踐活動,如圖,在測點A處安置測傾器,量出高度AB=1.5m,測得旗桿頂端D的仰角∠DBE=32°,量出測點A到旗桿底部C的水平距離AC=20m,根據(jù)測量數(shù)據(jù),求旗桿CD的高度.(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長;
(2)猜想線段EM與CN的數(shù)量關系并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com