如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點(diǎn)D、E分別為AM、AB上的動(dòng)點(diǎn),則BD+DE的最小值是________.

8
分析:過(guò)B點(diǎn)作BF⊥AC于點(diǎn)F,BF與AM交于D點(diǎn),根據(jù)三角形兩邊之和小于第三邊,可知BD+DE的最小值是線段BF的長(zhǎng),根據(jù)勾股定理列出方程組即可求解.
解答:解:過(guò)B點(diǎn)作BF⊥AC于點(diǎn)F,BF與AM交于D點(diǎn).
設(shè)AF=x,則CF=21-x,依題意有
,
解得,(負(fù)值舍去).
故BD+DE的最小值是8.
故答案為:8.
點(diǎn)評(píng):考查了軸對(duì)稱-最短路線問(wèn)題,勾股定理和解方程組,理解BD+DE的最小值是AC邊的高的長(zhǎng)是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案