如圖所示,在等腰梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,∠B=60°,BC=2cm,則上底DC的長(zhǎng)是________cm.

2
分析:由在等腰梯形ABCD中,AB∥CD,AD=BC,∠B=60°,即可求得∠DAC=∠CAB=30°,又由AB∥CD,可證得∠DCA=∠CAB,則可得∠DAC=∠DCA,即可證得CD=AD=BC,問(wèn)題得解.
解答:∵AB∥CD,AD=BC,
∴∠DAB=∠B=60°,
∵AC⊥BC,
∴∠ACB=90°,
∴∠CAB=30°,
∴∠DAC=∠CAB=30°,
∵AB∥CD,
∴∠DCA=∠CAB,
∴∠DAC=∠DCA,
∴CD=AD=BC=2cm.
故答案為:2.
點(diǎn)評(píng):此題考查了等腰梯形的性質(zhì),以及等腰三角形的判定與性質(zhì)等知識(shí).此題難度不大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,點(diǎn)P為BC邊上任意一點(diǎn),且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分別是E、F、G,請(qǐng)你探索PE、PF、BG的長(zhǎng)度之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、如圖所示,在等腰梯形ABCD中,AD∥BC,DE⊥BC于點(diǎn)E,BF⊥AE于點(diǎn)F,請(qǐng)你添加一個(gè)條件,使△ABF≌△CDE.
(1)你添加的一個(gè)條件是
AE=BE
;
(2)請(qǐng)寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

48、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于E,BF⊥AE于F,AE=BE.請(qǐng)你判斷線段BF與圖形中哪條線段相等,先寫(xiě)出你的猜想,再加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在等腰梯形ABCD中,AB∥CD,若AB+CD=4,并且∠AOB=120°,則該等腰梯形的面積為
 
(結(jié)果保留根號(hào)的形式).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在等腰梯形ABCD中,AD∥BC,過(guò)A作腰CD的平行線,AE∥CD,AB=AD=DC,∠B=60°
(1)△ABE是什么三角形?說(shuō)明理由;
(2)已知,AB=5,試求梯形ABCD的周長(zhǎng)及對(duì)角線AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案