已知直線與x軸和y軸分別交于點(diǎn)A和點(diǎn)B,拋物線的頂點(diǎn)M在直線AB上,且拋物線與直線AB的另一個(gè)交點(diǎn)為N.

(1)如圖,當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),求:
①拋物線的解析式;(4分)
②點(diǎn)N的坐標(biāo)和線段MN的長(zhǎng);(4分)
(2)拋物線在直線AB上平移,是否存在點(diǎn)M,使得△OMN與△AOB相似?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(4分)
(1)①②N(,-4),(2)存在。點(diǎn)M的坐標(biāo)為(2,-1)或(4,3)
解:(1)①∵直線與x軸和y軸分別交于點(diǎn)A和點(diǎn)B,∴A(,0),B(0,-5)。
當(dāng)頂點(diǎn)M與點(diǎn)A重合時(shí),∴M(,0)。
∴拋物線的解析式是:,即。
②∵N是直線與在拋物線的交點(diǎn),
,解得。
∴N(,-4)。
如圖,過(guò)N作NC⊥x軸,垂足為C。

∵N(,-4),∴C(,0)
∴NC=4.MC=OM-OC=
。
(2)存在。點(diǎn)M的坐標(biāo)為(2,-1)或(4,3)。
(1)①由直線與x軸和y軸分別交于點(diǎn)A和點(diǎn)B,求出點(diǎn)A、B的坐標(biāo),由頂點(diǎn)M與點(diǎn)A重合,根據(jù)二次函數(shù)的性質(zhì)求出頂點(diǎn)解析式。
②聯(lián)立,求出點(diǎn)N的坐標(biāo),過(guò)N作NC⊥x軸,由勾股定理求出線段MN的長(zhǎng)。
(2)存在兩種情況,△OMN與△AOB相似:
情況1,∠OMN=900,過(guò)M作MD⊥x軸,垂足為D。

設(shè)M(m,),則OD= m,DM=。
又OA=,OB=5,
則由△OMD∽△BAO得,,即,解得m=2。
∴M(2,-1)。
情況2,

∠ONM=900,若△OMN與△AOB相似,則∠OMN=∠OBN。
∴OM=OB=5。
設(shè)M(m,),則解得m=4。
∴M(4,3)。
綜上所述,當(dāng)點(diǎn)M的坐標(biāo)為(2,-1)或(4,3)時(shí),△OMN與△AOB相似。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

巴南區(qū)為了貫徹落實(shí)“森林重慶”,深入開(kāi)展“綠化長(zhǎng)江—重慶行動(dòng)”,F(xiàn)決定對(duì)本區(qū)培育種植樹(shù)苗的農(nóng)民實(shí)施政府補(bǔ)貼,規(guī)定每種植一畝樹(shù)苗一次性補(bǔ)貼農(nóng)民若干元,隨著補(bǔ)貼數(shù)額的不斷增大,生產(chǎn)規(guī)模也不斷增加,但每畝樹(shù)苗的收益會(huì)相應(yīng)降低。經(jīng)調(diào)查,種植畝數(shù)y(畝)、每畝樹(shù)苗的收益z(元)與補(bǔ)貼樹(shù)額x(元)之間的一次函數(shù)關(guān)系如下表:

(1)分別求出政府補(bǔ)貼政策實(shí)施后種植畝數(shù)y、每畝樹(shù)苗的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;
(2)要使我區(qū)種植樹(shù)苗的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值和此時(shí)種植的畝數(shù);(總收益=種植畝數(shù)每畝樹(shù)苗的收益)
(3)在取得最大收益的情況下,經(jīng)市場(chǎng)調(diào)查,培育種植水果類(lèi)樹(shù)苗經(jīng)濟(jì)效益更好,今年該地區(qū)決定用種植樹(shù)苗總面積m﹪的土地種植水果類(lèi)樹(shù)苗,因環(huán)境和經(jīng)濟(jì)等因素的制約,種植水果類(lèi)樹(shù)苗的面積不超過(guò)300畝 .經(jīng)測(cè)算,種植水果類(lèi)樹(shù)苗需用的支架、塑料膜等材料每畝費(fèi)用為2700元,此外還需購(gòu)置噴灌設(shè)備,這項(xiàng)費(fèi)用(元)與種植水果類(lèi)樹(shù)苗面積(畝)的平方成正比例,比例系數(shù)為9.預(yù)計(jì)今年種植水果類(lèi)樹(shù)苗后的這部分土地的收益比沒(méi)種植前的收益每畝增加了7500元,這樣,該地區(qū)今年因種植水果類(lèi)樹(shù)苗而增加的收益(扣除材料費(fèi)和設(shè)備費(fèi)后)共570000元.求m的值.
(結(jié)果精確到個(gè)位,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=-x2+4x+5,完成下列各題:
(1)將函數(shù)關(guān)系式用配方法化為的形式,并寫(xiě)出它的頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸.
(2)求出它的圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo).
(3)在直角坐標(biāo)系中,畫(huà)出它的圖象.

(4)根據(jù)圖象說(shuō)明:當(dāng)x為何值時(shí),y>0;當(dāng)x為何值時(shí),y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①a>0  ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0其中正確的個(gè)數(shù)為【   】
A.1B.2 C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖10,在平面直角坐標(biāo)系中,正方形OABC邊長(zhǎng)是4,點(diǎn)A、C分別在y軸、x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始,以每秒2個(gè)單位長(zhǎng)度的速度在線段AB上來(lái)回運(yùn)動(dòng).動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→O的方向,以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)O時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t,△OPQ的面積為S.
(1)當(dāng)t =1時(shí),S =          ;
(2)當(dāng)0≤ t ≤ 2時(shí),求滿足△BPQ的面積有最大值的P、Q兩點(diǎn)坐標(biāo);
(3)在P、Q兩點(diǎn)運(yùn)動(dòng)的過(guò)程中,是否存在某一時(shí)刻,使得S = 6.若存在,請(qǐng)直接寫(xiě)出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則 的值是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)。
(1)求證:對(duì)于任意實(shí)數(shù)m,該二次函數(shù)圖象與x軸總有公共點(diǎn);
(2)若該二次函數(shù)圖象與x軸有兩個(gè)公共點(diǎn)A,B,且A點(diǎn)坐標(biāo)為(1,0),求B點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)不屬于二次函數(shù)的是(   )
A.y=(x-1)(x+2)B.y=(x+1)2
C.y=1-x2D.y=2(x+3)2-2x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若二次函數(shù)配方后為的值分別為(    )
A.3,-8B.-6,-8 C.6,1   D.-3,1

查看答案和解析>>

同步練習(xí)冊(cè)答案