二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,經(jīng)過點(diǎn)A(1,);點(diǎn)F(0,1)在y軸上.直線y=﹣1與y軸交于點(diǎn)H.

(1)求二次函數(shù)的解析式;

(2)點(diǎn)P是(1)中圖象上的點(diǎn),過點(diǎn)P作x軸的垂線與直線y=﹣1交于點(diǎn)M,求證:FM平分∠OFP;

(3)當(dāng)△FPM是等邊三角形時(shí),求P點(diǎn)的坐標(biāo).


(1)解:∵二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,

∴設(shè)二次函數(shù)的解析式為y=ax2

將點(diǎn)A(1,)代入y=ax2得:a=,

∴二次函數(shù)的解析式為y=x2

(2)證明:∵點(diǎn)P在拋物線y=x2上,

∴可設(shè)點(diǎn)P的坐標(biāo)為(x, x2),

過點(diǎn)P作PB⊥y軸于點(diǎn)B,則BF=x2﹣1,PB=x,

∴Rt△BPF中,

PF==x2+1,

∵PM⊥直線y=﹣1,

∴PM=x2+1,

∴PF=PM,

∴∠PFM=∠PMF,

又∵PM∥x軸,

∴∠MFH=∠PMF,

∴∠PFM=∠MFH,

∴FM平分∠OFP;

(3)解:當(dāng)△FPM是等邊三角形時(shí),∠PMF=60°,

∴∠FMH=30°,

在Rt△MFH中,MF=2FH=2×2=4,

∵PF=PM=FM,

∴x2+1=4,

解得:x=±2

∴x2=×12=3,

∴滿足條件的點(diǎn)P的坐標(biāo)為(2,3)或(﹣2,3).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


化簡結(jié)果正確的是

A.

 

B.

C.

 

D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過市場銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).

(1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;

(2)求售價(jià)x的范圍;

(3)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


近年來,A市民用汽車擁有量持續(xù)增長,2009年至2013年該市民用汽車擁有量(單位:萬輛)依次為11,13,15,19,x.若這五個(gè)數(shù)的平均數(shù)為16,則x= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,四邊形ABCD是平行四邊形,E、F是對(duì)角線BD上的點(diǎn),∠1=∠2.

(1)求證:BE=DF;

(2)求證:AF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在式子,,,中,可以取2和3的是

A.                            B.

C.                           D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


分式方程的解是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知是一次函數(shù)的圖象上的兩個(gè)點(diǎn),則的大小關(guān)系是(    )

(A).      (B).      (C).      (D)不能確定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某商品的進(jìn)價(jià)為1000元,售價(jià)為2000元,由于銷售狀況不好,商店決定打折出售,但又要保證利潤不低于20%,則商店最多打 _________ 折.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案