【題目】如圖,在△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,下述結(jié)論:①BD平分∠ABC;②AD=BD=BC;③△BDC的周長(zhǎng)等于AB+BC;④D是AC中點(diǎn).其中正確的命題序號(hào)是( )
A.①②③ B.①②④ C.②③④ D.①③④
【答案】A
【解析】
試題分析:由AB的垂直平分線DE交AC于D,交AB于E,可得AD=BD,即可求得∠ABD=∠A=36°,又由AB=AC,即可求得∠CBD=∠ABD=36°,∠BDC=∠C=72°,繼而證得AD=BD=BC,△BDC的周長(zhǎng)等于AB+BC.
解:∵AB的垂直平分線DE交AC于D,交AB于E,
∴AD=BD,
∴∠ABD=∠A=36°,
∵AB=AC,
∴∠ABC=∠C=72°,
∴∠CBD=∠ABD=36°,
即BD平分∠ABC;故①正確;
∴∠BDC=∠C=72°,
∴BC=BD,
∴BC=BD=AD,故②正確;
∴△BDC的周長(zhǎng)為:BC+CD+BD=BC+C+AD=AC+BC=AB+BC;故③正確;
∵CD<BD,
∴CD<AD,
∴D不是AC中點(diǎn).故④錯(cuò)誤.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下面的圖形(每個(gè)正方形的邊長(zhǎng)均為1)和相應(yīng)的等式,探究其中的規(guī)律:
(1)寫出第五個(gè)等式,并在右邊給出的五個(gè)正方形上畫出與之對(duì)應(yīng)的圖示;
(2)猜想并寫出與第n個(gè)圖形相對(duì)應(yīng)的等式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A. 5x﹣3x=2 B. 2a+3b=5ab C. 2ab﹣ba=ab D. ﹣(a﹣b)=b+a
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD.
(1)圖中除直角外,還有相等的角嗎?請(qǐng)寫出兩對(duì):① ;② .
(2)如果∠COP=20°,則①∠BOP= °;②∠POF= °.
(3)∠EOC與∠BOF相等嗎? ,理由是 .
(4)如果∠COP=20°,求∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于D點(diǎn),E、F分別為DB、DC的中點(diǎn),則圖中共有全等三角形 對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,若∠B=60°,點(diǎn)E、F分別在AB、AD上,且BE=AF,則∠AEC+∠AFC的度數(shù)等于( )
A.120° B.140° C.160° D.180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】4件同型號(hào)的產(chǎn)品中,有1件不合格品和3件合格品.
(1)從這4件產(chǎn)品中隨機(jī)抽取1件進(jìn)行檢測(cè),求抽到的是不合格品的概率;
(2)從這4件產(chǎn)品中隨機(jī)抽取2件進(jìn)行檢測(cè),求抽到的都是合格品的概率;
(3)在這4件產(chǎn)品中加入x件合格品后,進(jìn)行如下試驗(yàn):隨機(jī)抽取1件進(jìn)行檢測(cè),然后放回,多次重復(fù)這個(gè)試驗(yàn),通過(guò)大量重復(fù)試驗(yàn)后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com