【題目】如圖,在△ABC中,CDAB邊上的中線,ECD的中點,過點CAB的平行線交AE的延長線于點F,連接BF

(1) 求證:CFAD;

(2) CACB,∠ACB90°,試判斷四邊形CDBF的形狀,并說明理由.

【答案】見解析;正方形.

【解析】

試題(1)、根據(jù)CF∥AB可得∠CFE∠DAE,∠FCE∠ADE,根據(jù)E為中點可得CE=DE,則△ECF△DEA全等,從而得出答案;(2)、根據(jù)AD=BD,則CF=BDCF∥BD得出平行四邊形,根據(jù)CDAB邊上的中線,CA=CB得出∠BDC=90°得出矩形,根據(jù)CD為等腰直角△ABC斜邊上的中線得出CD=BD,即得到正方形.

試題解析:(1)∵CF∥AB,∴∠CFE∠DAE∠FCE∠ADE,∵ECD的中點,∴CEDE,

∴△ECF≌△DEA(AAS), ∴CFAD

(2)四邊形CDBF為正方形,理由為:

∵ADBD, ∴CFBD; ∵CFBD,CF∥BD四邊形CDBF為平行四邊形,

∵CACBCDAB邊上的中線,∴CD⊥AB,即∠BDC90°,四邊形CDBF為矩形,

等腰直角△ABC中,CD為斜邊上的中線,∴CDAB,即CDBD,則四邊形CDBF為正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,AB=AC,BAC=90°,直線l經(jīng)過點A,過BC兩點分別作直線l的垂線段,垂足分別為D、E

1)如圖1,ABD與與CAE全等嗎?請說明理由;

2)如圖1,BD=DE+CE成立嗎?為什么?

3)若直線AEA點旋轉(zhuǎn)到如圖2位置時,其它條件不變,BDDE、CE關(guān)系如何?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個性化學(xué)習(xí)需求,某校就學(xué)生對知識拓展、體育特長、藝術(shù)特長和時間活動四類選課意向進行了抽樣調(diào)查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下列問題.

(1)求扇形統(tǒng)計圖中的m的值,并補全條形統(tǒng)計圖;

(2)已知該校800名學(xué)生,計劃開設(shè)實踐活動類課程,每班安排20人,問學(xué)校開設(shè)多少個實踐活動課課程的班級比較合理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】趙爽弦圖巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示趙爽弦圖是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若(ab)221,大正方形的面積為13,則小正方形的面積為

A. 3B. 4C. 5D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,如圖所示,并規(guī)定,顧客消費100元以上(不包括100元),就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針正好對準打折區(qū)域顧客就可以獲得此項待遇(轉(zhuǎn)盤等分成8份,指針停在每個區(qū)域的機會相等)

1)顧客小華消費150元,獲得打折待遇的概率是多少?

2)顧客小明消費120元,獲得五折待遇的概率是多少?

3)小華對小明說:我們用這個轉(zhuǎn)盤來做一個游戲,指針指到五折你贏,指針指到七折算我贏,你認為這個游戲規(guī)則公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中每個小方格的邊長為1,且點A,B,C均為格點.

1)畫出ABC關(guān)于直線l的對稱圖形A1B1C1

2)ABC的面積;

3)邊AB_____________(不用寫過程);

4)在直線l上找一點D,使ADBD最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2 E3E4B3……按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3……在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O= 60°, B1C1∥B2C2∥B3C3……,則正方形A2017B2017 C2017 D2017的邊長是( )

A. 2016 B. 2017 C. 2016 D. 2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點E在邊CD上,將該矩形沿AE折疊,使點D落在邊BC上的點F處,過點FFGCD,交AE于點G,連接DG

(1)求證:四邊形DEFG為菱形;

(2)若CD=8,CF=4,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形,,,.動點從點出發(fā),沿射線的方向以每秒的速度運動到點返回,動點從點出發(fā),在線段上以每秒的速度向點運動,點,分別從點,同時出發(fā),當(dāng)點運動到點時,點停止運動,設(shè)運動時間為(秒).

1)當(dāng)時,是否存在點,使四邊形是平行四邊形,若存在,求出值;若不存在,請說明理由;

2)當(dāng)為何值時,以,,為頂點的四邊形面積等于

3)當(dāng)時,是否存在點,使是等腰三角形?若存在,請直接寫出所有滿足要求的的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案