【題目】如圖1,在正方形ABCD內(nèi)作∠EAF=45°,AE交BC于點(diǎn)E,AF交CD于點(diǎn)F,連接EF,過點(diǎn)A作AH⊥EF,垂足為H.
(1)如圖2,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG.
①求證:△AGE≌△AFE;
②若BE=2,DF=3,求AH的長.
(2)如圖3,連接BD交AE于點(diǎn)M,交AF于點(diǎn)N.請?zhí)骄坎⒉孪耄壕段BM,MN,ND之間有什么數(shù)量關(guān)系?并說明理由.
【答案】(1)①詳見解析;②6;(2)MN2=ND2+BM2,,理由見解析.
【解析】
試題分析:(1)①由旋轉(zhuǎn)的性質(zhì)可知:AF=AG,∠DAF=∠BAG,接下來在證明∠GAE=∠FAE,然后依據(jù)SAS證明△GAE≌△FAE即可;②由全等三角形的性質(zhì)可知:AB=AH,GE=EF=5.設(shè)正方形的邊長為x,在Rt△EFC中,依據(jù)勾股定理列方程求解即可;(2)將△ABM逆時(shí)針旋轉(zhuǎn)90°得△ADM′.在△NM′D中依據(jù)勾股定理可證明NM′2=ND2+DM′2,接下來證明△AMN≌△ANM′,于的得到MN=NM′,最后再由BM=DM′證明即可.
試題解析:(1)①由旋轉(zhuǎn)的性質(zhì)可知:AF=AG,∠DAF=∠BAG.
∵四邊形ABCD為正方形,
∴∠BAD=90°.
又∵∠EAF=45°,
∴∠BAE+∠DAF=45°.
∴∠BAG+∠BAE=45°.
∴∠GAE=∠FAE.
在△GAE和△FAE中,
∴△GAE≌△FAE.
②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,
∴AB=AH,GE=EF=5.
設(shè)正方形的邊長為x,則EC=x﹣2,F(xiàn)C=x﹣3.
在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.
解得:x=6.
∴AB=6.
∴AH=6.
(3)如圖所示:將△ABM逆時(shí)針旋轉(zhuǎn)90°得△ADM′.
∵四邊形ABCD為正方形,
∴∠ABD=∠ADB=45°.
由旋轉(zhuǎn)的性質(zhì)可知:∠ABM=∠ADM′=45°,BE=DM′.
∴∠NDM′=90°.
∴NM′2=ND2+DM′2.
∵∠EAM′=90°,∠EAF=45°,
∴∠EAF=∠FAM′=45°.
在△AMN和△ANM′中,,
∴△AMN≌△ANM′.
∴MN=NM′.
又∵BM=DM′,
∴MN2=ND2+BM2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果|a|=-a,那么a一定是 ( )
A. 正數(shù) B. 負(fù)數(shù)
C. 非正數(shù) D. 非負(fù)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地傍晚氣溫為﹣2℃,到夜晚下降了5℃,則夜晚的氣溫為__,第二天中午上升了10℃,則此時(shí)溫度為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列表述,能確定位置的是( )
A. 東經(jīng)118°,北緯40° B. 江東大橋南 C. 北偏東30° D. 某電影院第2排
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將0.00025用科學(xué)記數(shù)法表示為( )
A.2.5×104
B.0.25×10﹣4
C.2.5×10﹣4
D.25×10﹣5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com