如圖,在直角坐標(biāo)系中,以點(diǎn)M(3,0)為圓心,以6為半徑的圓分別交x軸的正半軸于點(diǎn)A,交x軸的負(fù)半軸交于點(diǎn)B,交y軸的正半軸于點(diǎn)C,過(guò)點(diǎn)C的直線交x軸的負(fù)半軸于點(diǎn)D(-9,0)
(1)求A、C兩點(diǎn)的坐標(biāo);
(2)求證:直線CD是⊙M的切線;
(3)若拋物線y=x2+bx+c經(jīng)過(guò)M、A兩點(diǎn),求此拋物線的解析式.精英家教網(wǎng)
分析:(1)已知了圓心M的坐標(biāo),即可得出OM的長(zhǎng),題中也告訴了圓的半徑即可得出OA的長(zhǎng)也就能求出A點(diǎn)的坐標(biāo).求C點(diǎn)坐標(biāo)就是求OC的長(zhǎng),可連接MC,在直角三角形OMC中用勾股定理即可求出OC的長(zhǎng).
(2)本題只需證MC⊥CD即可,在直角三角形OCD中,根據(jù)OD和CD的長(zhǎng)即可求出∠CDO的度數(shù),在直角三角形MCO中可求出∠CMO的度數(shù),有這兩個(gè)角的度數(shù)即可求出∠DCM=90°,由此可得證.(本題方法不唯一.)
(3)將M、A的坐標(biāo)代入拋物線中即可求出其解析式.
解答:(1)解:連接CM,由題意得:OM=3,OB=3,OD=9,MC=6
OA=OM+MA=3+6=9,A(9,0),
OC=
MC2-OM2
=
62-32
=3
3

∴C(0,3
3

精英家教網(wǎng)
(2)證法一:在Rt△DCO中,
DC=
DO2+CO2
=
92+(3
3
)
2
=6
3
在△DCM中,
CM2+DC2=62+(6
3
)2=144
,DM2=(DO+OM)2=(9+3)2=122=144
∴CM2+DC2=DM2
∴△DCM直角三角形.
∴MC⊥DC,而MC是⊙M的半徑
∴CD是⊙M的切線.
證法二:在Rt△COM中,
sin∠MCO=
OM
OC
=
3
6
=
1
2

∴∠MCO=30°
在Rt△DOC中,
tan∠DCO=
DO
CO
=
9
3
3
=
3

∴∠DCO=60°
∴∠DCM=∠MCO+∠DCO=90°
∴MC⊥DC,而MC中的⊙M半徑.
證法三:在△CMO和△DMC中
CM
OM
=
6
2
=2
DM
MC
=
DO+OM
MC
=
12
6
=2

CM
OM
=
DM
MC

又∵∠CMO=∠DMC△CMO∽△DMC
∴∠COM=∠DCM=90°
∴MC⊥DC,而MC中的⊙M半徑.
∴MC⊥DC,而MC中的⊙M半徑.

(3)解:由拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)M(3,0)和點(diǎn)A(9,0),
可得:
9+3b+c=0
81+9b+c=0

解得:
b=-12
c=27

∴拋物線的解析式為:y=x2-12x+27.
點(diǎn)評(píng):本題考查了切線的性質(zhì)、解直角三角形、二次函數(shù)解析式的確定等知識(shí)點(diǎn).綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過(guò)第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過(guò)點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案