【題目】【問(wèn)題提出】如圖1,四邊形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四邊形ABCD的面積.
【嘗試解決】
旋轉(zhuǎn)是一種重要的圖形變換,當(dāng)圖形中有一組鄰邊相等時(shí),往往可以通過(guò)旋轉(zhuǎn)解決問(wèn)題.
(1)如圖2,連接 BD,由于AD=CD,所以可將△DCB繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△DAB′,則△BDB′的形狀是 .
(2)在(1)的基礎(chǔ)上,求四邊形ABCD的面積.
[類比應(yīng)用]如圖3,四邊形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=,求四邊形ABCD的面積.
考點(diǎn):幾何變換綜合題.
【答案】
【解析】
試題分析:(1)易證△DEB≌△DAB′,則BD=DB′,∠BDB′=60°,所以△BDB′是等邊三角形;
(2)知等邊三角形的邊長(zhǎng)為3,求出S△BDB′即可;
【類比應(yīng)用】類比(1),連接 BD,由于AD=CD,所以可將△BCD繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△DAB′,連接BB′,延長(zhǎng)BA,作B′E⊥BE;易證△AFB′是等腰直角三角形,△AEB是等腰直角三角形,利用勾股定理計(jì)算AE=B′E=1,BB′=,求△ABB′和△BDB′的面積和即可.
解:(1)如圖2,連接 BD,由于AD=CD,所以可將△DCB繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△DAB′,
∵BD=B′D,∠BDB′=60°
∴△BDB′是等邊三角形;
(2)由(1)知,△BCD≌△B′AD,
∴四邊形ABCD的面積=等邊三角形BDB′的面積,
∵BC=AB′=1
∴BB′=AB+AB′=2+1=3,
∴S四邊形ABCD=S△BDB′==;
【類比應(yīng)用】如圖3,連接 BD,由于AD=CD,所以可將△BCD繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△DAB′,
連接BB′,延長(zhǎng)BA,作B′E⊥BE;
∵,
∴△BCD≌△B′AD
∴S四邊形ABCD=S四邊形BDB′A,
∵∠ABC=75°,∠ADC=60°,
∴∠BAB′=135°
∴∠B′AE=45°,
∵B′A=BC=,
∴B′E=AE=1,
∴BE=AB+AE=2+1=3,
∴BB′=,
∴S△ABB′=ABB′E=×2×1=1,
S△BDB′==,
∴S四邊形ABCD=S四邊形BDB′A=S△BDB′﹣S△ABB′=﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的周長(zhǎng)為8m,高AE的長(zhǎng)為cm,則對(duì)角線BD的長(zhǎng)為( )
A.2cm B.3cm C.cm D.2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A. (﹣3a2)2=6a4 B. (﹣a3)2=﹣a6 C. (﹣x2)3=﹣x5 D. x3x2=x5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下列各組線段為邊,能組成三角形的是( )
A. 3cm.4cm.8cm
B. 8cm,7cm,15cm
C. 5cm,5cm,11cm
D. 11cm,12cm,13crn
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,lA、lB分別表示A步行與B騎車(chē)在同一路上行駛的路程S與時(shí)間t的關(guān)系.
(1)B出發(fā)時(shí)與A相距 千米.
(2)走了一段路后,自行車(chē)發(fā)生故障,進(jìn)行修理,所用的時(shí)間是 小時(shí).
(3)B出發(fā)后 小時(shí)與A相遇.
(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com