(2013•安溪縣質(zhì)檢)已知:把Rt△ABC和Rt△DEF按圖(a)擺放,點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8厘米,BC=6厘米,EF=9厘米.如圖(b),△DEF從圖(a)的位置出發(fā),以1厘米/秒的速度沿CB向△ABC勻速移動(dòng),點(diǎn)P同時(shí)從點(diǎn)B出發(fā),以2厘米/秒的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí)移動(dòng)即停止.記DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(秒)(0<t<4.5).求:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上;
(2)當(dāng)t為何值時(shí),△APQ與△ABC相似;
(3)當(dāng)t為何值時(shí),點(diǎn)P、Q、F在同一直線上.
分析:(1)因?yàn)辄c(diǎn)A在線段PQ垂直平分線上,所以得到線段相等,可得CE=CQ,用含t的式子表示出這兩個(gè)線段即可得解;
(2)需要分類討論:△APQ∽△ABC和△APQ∽△ACB兩種情況,由相似三角形的對(duì)應(yīng)邊成比例列出相應(yīng)的比例式,把相關(guān)線段的長(zhǎng)度代入,易求t的值;
(3)過P作PN⊥AC于N,構(gòu)建相似三角形:△PAN∽△BAC,則相似三角形的對(duì)應(yīng)邊成比例,即
PN
BC
=
AP
AB
=
AN
AC
,所以易得NQ=AQ-AN=8-t-(8-
8
5
t)=
3
5
t.連結(jié)QF,當(dāng)點(diǎn)P、Q、F在同一直線上時(shí),△QCF∽△QNP,則
PN
FC
=
NQ
CQ
,即
6-
6
5
t
9-t
=
3
5
t
t
,由此可以求得t的值.
解答:解:(1)依題意,得EC=QC=t.
∴BE=6-t,AQ=8-t,AB=
BC2+AC2
=10.
∵BP=2t,
∴AP=10-2t.
當(dāng)點(diǎn)A在線段PQ的垂直平分線上時(shí),AP=AQ,
∴10-2t=8-t,解得t=2,
即當(dāng)t=2時(shí),點(diǎn)A在線段PQ的垂直平分線上;

(2)∵∠ACB=90°,
∴當(dāng)∠AQP=90°即△APQ∽△ABC時(shí),
AQ
AP
=
AC
AB
,∴
8-t
10-2t
=
4
5
,解得t=0(舍去);
當(dāng)∠APQ=90°即△APQ∽△ACB時(shí),
AP
AQ
=
AC
AB
,∴
10-2t
8-t
=
4
5
,解得t=3,
∴當(dāng)t=3時(shí),△APQ與△ABC相似;

(3)假設(shè)存在某一時(shí)刻t,使點(diǎn)P、Q、F三點(diǎn)在同一條直線上;
過P作PN⊥AC于N,∴△PAN∽△BAC,
PN
BC
=
AP
AB
=
AN
AC
,即
PN
6
=
10-2t
10
=
AN
8
,
∴PN=6-
6
5
t,AN=8-
8
5
t,
∴NQ=AQ-AN=8-t-(8-
8
5
t)=
3
5
t.
∵點(diǎn)P、Q、F在同一直線上,
∴△QCF∽△QNP,
PN
FC
=
NQ
CQ

6-
6
5
t
9-t
=
3
5
t
t
,
解得t=1
∴當(dāng)t=1時(shí),P、Q、F三點(diǎn)在同一直線上.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、二次函數(shù)的最值、特殊圖形的面積的求法等知識(shí),圖形較復(fù)雜,考查學(xué)生數(shù)形結(jié)合的能力,綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安溪縣質(zhì)檢)下列計(jì)算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安溪縣質(zhì)檢)點(diǎn)P(-3,2)關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)P′的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安溪縣質(zhì)檢)若弧長(zhǎng)為20πcm的扇形的圓心角為120°,則扇形的半徑
30
30
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安溪縣質(zhì)檢)如圖,正方形ABCD的邊長(zhǎng)為2,E是CD的中點(diǎn),在對(duì)角線AC上有一點(diǎn)P,則PD+PE的最小值是
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安溪縣質(zhì)檢)計(jì)算:
16
=
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案