在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(1,0),以O(shè)A為邊在第一象限內(nèi)作等邊△OAB,C為x軸正半軸上的一個(gè)動(dòng)點(diǎn)(OC>1),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點(diǎn).
(1)如圖,當(dāng)C點(diǎn)在x軸上運(yùn)動(dòng)時(shí),設(shè)AC=x,請(qǐng)用x表示線段AD的長(zhǎng);

(2)隨著C點(diǎn)的變化,直線AE的位置變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點(diǎn)F,
①當(dāng)C點(diǎn)運(yùn)動(dòng)到何處時(shí)直線EF∥直線BO?此時(shí)⊙F和直線BO的位置關(guān)系如何?請(qǐng)說(shuō)明理由.
②G為CD與⊙F的交點(diǎn),H為直線DF上的一個(gè)動(dòng)點(diǎn),連結(jié)HG、HC,求HG+HC的最小值,并將此最小值用x表示.
(1)1+x;(2);(3)相切,理由見解析,.

試題分析:(1)由△OAB和△BCD都為等邊三角形,等邊三角形的邊長(zhǎng)相等,且每一個(gè)內(nèi)角都為60°,得到∠OBA=∠DBC,等號(hào)兩邊都加上∠ABC,得到∠OBC=∠ABD,根據(jù)“SAS”得到△OBC≌△ABD,即可得到對(duì)應(yīng)邊AD與OC相等,由OC表示出AD即可;
(2)隨著C點(diǎn)的變化,直線AE的位置不變.理由為:由(1)得到的兩三角形全等,得到∠BAD=∠BOC=60°,又等邊三角形BCD,得到∠BAO=60°,根據(jù)平角定義及對(duì)頂角相等得到∠OAE=60°,在直角三角形OAE中,由OA的長(zhǎng),根據(jù)tan60°的定義求出OE的長(zhǎng),確定出點(diǎn)E的坐標(biāo),設(shè)出直線AE的方程,把點(diǎn)A和E的坐標(biāo)代入即可確定出解析式;
(3)①由EA與OB平行,且EF也與OB平行,根據(jù)過(guò)直線外一點(diǎn)作已知直線的平行線有且只有一條,得到EF與EA重合,所以F為BC與AE的交點(diǎn),又F為BC的中點(diǎn),得到A為OC中點(diǎn),由A的坐標(biāo)即可求出C的坐標(biāo);相切,理由是由F為等邊三角形BC邊的中點(diǎn),根據(jù)“三線合一”得到DF與BC垂直,由EF與OB平行得到BF與OB垂直,得證;
②根據(jù)等邊三角形的“三線合一”得到DF垂直平分BC,所以C與D關(guān)于DF對(duì)稱,所以GB為HC+HG的最小值,GB的求法是:由B,C及G三點(diǎn)在圓F圓周上,得到FB,F(xiàn)C及FG相等,利用一邊的中線等于這邊的一半得到三角形BCG為直角三角形,根據(jù)“三線合一”得到∠CBG為30°,利用cos30°和BC的長(zhǎng)即可求出BG,而BC的長(zhǎng)需要過(guò)B作BM垂直于x軸,根據(jù)等邊三角形的性質(zhì)求出BM及AM,表示出CM,在直角三角形BMC中,根據(jù)勾股定理表示出BC的長(zhǎng)即可.
試題解析:(1)∵△OAB和△BCD都為等邊三角形,
∴OB=AB,BC=BD,
∠OBA=∠DBC=60°,即∠OBA+∠ABC=∠DBC+∠ABC,
∴∠OBC=∠ABD,
∴△OBC≌△ABD,
∴AD=OC=1+x;
(2)隨著C點(diǎn)的變化,直線AE的位置不變.理由如下:
由△OBC≌△ABD,得到∠BAD=∠BOC=60°,
又∵∠BAO=60°,∴∠DAC=60°,
∴∠OAE=60°,又OA=1,
在直角三角形AOE中,tan60°=,則OE=,點(diǎn)E坐標(biāo)為(0,-),A(1,0),
設(shè)直線AE解析式為y=kx+b,把E和A的坐標(biāo)代入得:
,解得:,
所以直線AE的解析式為
(3)①根據(jù)題意畫出圖形,如圖所示:

∵∠BOA=∠DAC=60°,EA∥OB,又EF∥OB,則EF與EA所在的直線重合,∴點(diǎn)F為DE與BC的交點(diǎn),
又F為BC中點(diǎn),∴A為OC中點(diǎn),又AO=1,則OC=2,
∴當(dāng)C的坐標(biāo)為(2,0)時(shí),EF∥OB;
這時(shí)直線BO與⊙F相切,理由如下:
∵△BCD為等邊三角形,F(xiàn)為BC中點(diǎn),
∴DF⊥BC,又EF∥OB,
∴FB⊥OB,即∠FBO=90°,
故直線BO與⊙F相切;
②根據(jù)題意畫出圖形,如圖所示:

由點(diǎn)B,點(diǎn)C及點(diǎn)G在圓F的圓周上得:FB=FC=FG,即FG=BC,
∴△CBG為直角三角形,又△BCD為等邊三角形,
∴BG為∠CBD的平分線,即∠CBG=30°,
過(guò)點(diǎn)B作x軸的垂直,交x軸于點(diǎn)M,由△OAB為等邊三角形,
∴M為OA中點(diǎn),即MA=,BM=,MC=AC+AM=x+,
在直角三角形BCM中,根據(jù)勾股定理得:
BC=
∵DF垂直平分BC,∴B和C關(guān)于DF對(duì)稱,∴HC=HB,
則HC+HG=BG,此時(shí)BG最小,
在直角三角形BCG中,BG=BCcos30°=
考點(diǎn):1. 一次函數(shù)綜合題;2.等邊三角形的性質(zhì);3.直線與圓的位置關(guān)系;4.軸對(duì)稱-最短路線問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=-2x+8交x軸于A,交y軸于B i點(diǎn)p在線段AB上,過(guò)點(diǎn)P分別向x軸、y軸引垂線,垂足為C、D,設(shè)點(diǎn)P的橫坐標(biāo)為m,矩形PCOD的面積為S.

(1)求S與m的函數(shù)關(guān)系式; (2)當(dāng)m取何值時(shí)矩形PCOD的面積最大,最大值是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為保護(hù)學(xué)生視力,課桌椅的高度都是按一定的關(guān)系配套設(shè)計(jì)的,研究表明:假設(shè)課桌的高度為 cm,椅子的高度為 cm,則應(yīng)是的一次函數(shù),下表列出兩套符合條件的課桌椅的高度:
 
第一套
第二套
椅子高度(cm)
40
37
課桌高度(cm)
75
70
(1)請(qǐng)確定的函數(shù)關(guān)系式.
(2)現(xiàn)有一把高39 cm的椅子和一張高78.2 cm的課桌,它們是否配套?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)與函數(shù)的圖象大致如圖.若試確定自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

B島位于自然環(huán)境優(yōu)美的西沙群島,盛產(chǎn)多種魚類.A港、B島、C港依次在同一條直線上,一漁船從A港出發(fā)經(jīng)由B島向C港航行,航行2小時(shí)時(shí)發(fā)現(xiàn)魚群,于是漁船勻速緩慢向B港方向前行打漁.在漁船出發(fā)一小時(shí)后,一艘快艇由C港出發(fā),經(jīng)由B島前往A港運(yùn)送物資.當(dāng)快艇到達(dá)B島時(shí)漁船恰好打漁結(jié)束,漁船又以原速經(jīng)由B島到達(dá)C港.下面是兩船距B港的距離y(海里)與漁船航行時(shí)間x(小時(shí))的函數(shù)圖象,結(jié)合圖象回答下列問(wèn)題:

(1)請(qǐng)直接寫出m,a的值.
(2)求出線段MN的解析式,并寫出自變量的取值范圍.
(3)從漁船出發(fā)后第幾小時(shí)兩船相距10海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知某一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-1,2),且函數(shù)y的值隨自變量x的增大而減小,請(qǐng)寫出一個(gè)符合上述條件的函數(shù)關(guān)系式:____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若一次函數(shù)的圖象交軸于正半軸,且的值隨值的增大而減小,則(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中,當(dāng)x>0時(shí),的增大而減小的是(      )
A.y=3xB.C.D.y=2x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若雙曲線與直線的一個(gè)交點(diǎn)的橫坐標(biāo)為,則的值為       

查看答案和解析>>

同步練習(xí)冊(cè)答案