【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(0,1),且過點(diǎn)(﹣1, ),直線y=kx+2與y軸相交于點(diǎn)P,與二次函數(shù)圖象交于不同的兩點(diǎn)A(x1 , y1),B(x2 , y2). (注:在解題過程中,你也可以閱讀后面的材料)
附:閱讀材料
任何一個(gè)一元二次方程的根與系數(shù)的關(guān)系為:兩根的和等于一次項(xiàng)系數(shù)與二次項(xiàng)系數(shù)的比的相反數(shù),兩根的積等于常數(shù)項(xiàng)與二次項(xiàng)系數(shù)的比.
即:設(shè)一元二次方程ax2+bx+c=0的兩根為x1 , x2
則:x1+x2=﹣ ,x1x2=
能靈活運(yùn)用這種關(guān)系,有時(shí)可以使解題更為簡(jiǎn)單.
例:不解方程,求方程x2﹣3x=15兩根的和與積.
解:原方程變?yōu)椋簒2﹣3x﹣15=0
∵一元二次方程的根與系數(shù)有關(guān)系:x1+x2=﹣ ,x1x2=
∴原方程兩根之和=﹣ =3,兩根之積= =﹣15.

(1)求該二次函數(shù)的解析式.
(2)對(duì)(1)中的二次函數(shù),當(dāng)自變量x取值范圍在﹣1<x<3時(shí),請(qǐng)寫出其函數(shù)值y的取值范圍;(不必說明理由)
(3)求證:在此二次函數(shù)圖象下方的y軸上,必存在定點(diǎn)G,使△ABG的內(nèi)切圓的圓心落在y軸上,并求△GAB面積的最小值.

【答案】
(1)解:由于二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(0,1),

因此二次函數(shù)的解析式可設(shè)為y=ax2+1.

∵拋物線y=ax2+1過點(diǎn)(﹣1, ),

=a+1.

解得:a=

∴二次函數(shù)的解析式為:y= x2+1


(2)解:當(dāng)x=﹣1時(shí),y= ,

當(dāng)x=0時(shí),y=1,

當(dāng)x=3時(shí),y= ×32+1= ,

結(jié)合圖1可得:當(dāng)﹣1<x<3時(shí),y的取值范圍是1≤y<


(3)①證明:過點(diǎn)A作y軸的對(duì)稱點(diǎn)A′,連接BA′并延長(zhǎng),交y軸于點(diǎn)G,連接AG,如圖2,

則點(diǎn)A′必在拋物線上,且∠AGP=∠BGP,

∴△ABG的內(nèi)切圓的圓心落在y軸上.

∵點(diǎn)A的坐標(biāo)為(x1,y1),

∴點(diǎn)A′的坐標(biāo)為(﹣x1,y1).

∵點(diǎn)A(x1,y1)、B(x2,y2)在直線y=kx+2上,

∴y1=kx1+2,y2=kx2+2.

∴點(diǎn)A′的坐標(biāo)為(﹣x1,kx1+2)、點(diǎn)B的坐標(biāo)為(x2,kx2+2).

設(shè)直線BG的解析式為y=mx+n,則點(diǎn)G的坐標(biāo)為(0,n).

∵點(diǎn)A′(﹣x1,kx1+2)、B(x2,kx2+2)在直線BG上,

解得:

∵A(x1,y1),B(x2,y2)是直線y=kx+2與拋物線y= x2+1的交點(diǎn),

∴x1、x2是方程kx+2= x2+1即x2﹣4kx﹣4=0的兩個(gè)實(shí)數(shù)根.

∴由根與系數(shù)的關(guān)系可得;x1+x2=4k,x1x2=﹣4.

∴n= =﹣2+2=0.

∴點(diǎn)G的坐標(biāo)為(0,0).

∴在此二次函數(shù)圖象下方的y軸上,存在定點(diǎn)G(0,0),使△ABG的內(nèi)切圓的圓心落在y軸上.

②解:過點(diǎn)A作AC⊥OP,垂足為C,過點(diǎn)B作BD⊥OP,垂足為D,如圖2,

∵直線y=kx+2與y軸相交于點(diǎn)P,

∴點(diǎn)P的坐標(biāo)為(0,2).

∴PG=2.

∴SABG=SAPG+SBPG

= PGAC+ PGBD

= PG(AC+BD)

= ×2×(﹣x1+x2

=x2﹣x1

=

=

=

=4

∴當(dāng)k=0時(shí),SABG最小,最小值為4.

∴△GAB面積的最小值為4.


【解析】(1)設(shè)二次函數(shù)解析式為y=ax2+1,由于點(diǎn)(﹣1, )在二次函數(shù)圖象上,把該點(diǎn)的坐標(biāo)代入y=ax2+1,即可求出a,從而求出二次函數(shù)的解析式.(2)先分別求出x=﹣1,x=0,x=3時(shí)y的值,然后結(jié)合圖象就可得到y(tǒng)的取值范圍.(3)過點(diǎn)A作y軸的對(duì)稱點(diǎn)A′,連接BA′并延長(zhǎng),交y軸于點(diǎn)G,連接AG,如圖2,則點(diǎn)A′必在拋物線上,且∠AGP=∠BGP,由此可得△ABG的內(nèi)切圓的圓心落在y軸上.由于點(diǎn)A(x1 , y1)、B(x2 , y2)在直線y=kx+2上,從而可以得到點(diǎn)A的坐標(biāo)為(x1 , kx1+2)、A′的坐標(biāo)為(﹣x1 , kx1+2)、B的坐標(biāo)為(x2 , kx2+2).設(shè)直線BG的解析式為y=mx+n,則點(diǎn)G的坐標(biāo)為(0,n).由于點(diǎn)A′(﹣x1 , kx1+2)、B(x2 , kx2+2)在直線BG上,可用含有k、x1、x2的代數(shù)式表示n.由于A、B是直線y=kx+2與拋物線y= x2+1的交點(diǎn),由根與系數(shù)的關(guān)系可得:x1+x2=4k,x1x2=﹣4.從而求出n=0,即可證出:在此二次函數(shù)圖象下方的y軸上,存在定點(diǎn)G(0,0),使△ABG的內(nèi)切圓的圓心落在y軸上.由SABG=SAPG+SBPG , 可以得到SABG=x2﹣x1= =4 ,所以當(dāng)k=0時(shí),SABG最小,最小值為4.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解根與系數(shù)的關(guān)系(一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商),還要掌握確定一次函數(shù)的表達(dá)式(確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國(guó)道路交通管理?xiàng)l例規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀正前方30 m,過了2 s,測(cè)得小汽車與車速檢測(cè)儀間距離為50 m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

在函數(shù):y=-2x-1;y=3x;y=;y=-;y=(x<0)中,y隨x增大而減小的有3個(gè)函數(shù);

對(duì)角線互相垂直平分且相等的四邊形是正方形;

反比例函數(shù)圖象是兩條無(wú)限接近坐標(biāo)軸的曲線,它只是中心對(duì)稱圖形;

已知數(shù)據(jù)x1、x2、x3的方差為s2,則數(shù)據(jù)x1+2,x3+2,x3+2的方差為s3+2

其中是真命題的個(gè)數(shù)是(

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校積極開展每天鍛煉1小時(shí)活動(dòng),老師對(duì)本校八年級(jí)學(xué)生進(jìn)行一分鐘跳繩測(cè)試,并對(duì)跳繩次數(shù)進(jìn)行統(tǒng)計(jì),繪制了八(1)班一分鐘跳繩次數(shù)的頻數(shù)分布直方圖和八年級(jí)其余班級(jí)一分鐘跳繩次數(shù)的扇形統(tǒng)計(jì)圖.已知在圖1中,組中值為150次一組的 頻率為0.2.(說明: 組中值為190次的組別為 180≤次數(shù)<200

請(qǐng)結(jié)合統(tǒng)計(jì)圖完成下列問題:

1)八(1)班的人數(shù)是 ,組中值為110次一組的頻率為 ;

2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;

3)如果一分鐘跳繩次數(shù)不低于120次的同學(xué)視為達(dá)標(biāo),八年級(jí)同學(xué)一分鐘跳繩的達(dá)標(biāo)率不低于90%,那么八年級(jí)同學(xué)至少有多少人?請(qǐng)寫出解答過程。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC,C=90°,BC=6,AC=8,點(diǎn)D在線段AC上從CA運(yùn)動(dòng).若設(shè)CD=x,ABD的面積為y.

(1)請(qǐng)寫出yx之間的關(guān)系式.

(2)當(dāng)x為何值時(shí),y有最大值,最大值是多少?此時(shí)點(diǎn)D在什么位置?

(3)當(dāng)ABD的面積是ABC的面積的一半時(shí),點(diǎn)D在什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位射擊運(yùn)動(dòng)員在10次射擊訓(xùn)練中,命中靶的環(huán)數(shù)如圖. 請(qǐng)你根據(jù)圖表,完成下列問題:

(1)補(bǔ)充完成下面成績(jī)表單的填寫:

射擊序次

1

2

3

4

5

6

7

8

9

10

成績(jī)/環(huán)

8

10

7

9

10

7

10


(2)求該運(yùn)動(dòng)員這10次射擊訓(xùn)練的平均成績(jī).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如下圖1,2,他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似的,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是(

A. 289 B. 1225 C. 1024 D. 1378

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.

(1)若1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則﹣4表示的點(diǎn)與數(shù) _________ 表示的點(diǎn)重合;

(2)若﹣1表示的點(diǎn)與5表示的點(diǎn)重合,回答以下問題:

13表示的點(diǎn)與數(shù) _________ 表示的點(diǎn)重合;

②若數(shù)軸上A、B兩點(diǎn)之間的距離為2018(AB的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,求A、B兩點(diǎn)表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.

(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動(dòng)點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案