【題目】有一個(gè)拋物線型蔬菜大棚,將其截面放在如圖所示的平面直角坐標(biāo)系中,拋物線可以用函數(shù)y=ax2+bx來表示.已知大棚在地面上的寬度OA8米,距離O點(diǎn)2米處的棚高BC米.

(1)求該拋物線的函數(shù)關(guān)系式;

(2)若借助橫梁DE建一個(gè)門,要求門的高度不低于1.5米,則橫梁DE的寬度最多是多少米?

【答案】(1)y=-x2x;(2)橫梁DE的寬度最多是4米.

【解析】

(1)直接利用待定系數(shù)法求出二次函數(shù)解析式進(jìn)而得出答案;

(32)利用y=1.5代入求出答案.

(1)由題意可得,拋物線經(jīng)過(2,),(8,0),

,

解得

y=-x2x;

(2)由題意可得:當(dāng)y=1.5時(shí),1.5=-x2x,

解得x1=4+2,x2=4-2.

DE=|x1-x2|=|4+2-(4-2)|=4.

即橫梁DE的寬度最多是4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,

(1) 如圖1,若BD=DC,點(diǎn)CAE的垂直平分線上。AB+BDDE有什么關(guān)系?請給出證明。

(2) 如圖2,若, AB+BDDE是否還存在(1)中的關(guān)系?若存在,請給出證明,若不存在,請說明理由。

(3) ,則AB+AEAD+BE有怎樣的關(guān)系?答:AB+AE AD+BE (填“>”,“<”“=”

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCACB90°,ACBC,ABC的高CD與角平分線AE相交點(diǎn)F,過點(diǎn)CCHAEG,ABH

1)求BCH的度數(shù)

2)求證CEBH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)a0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)AB的橫坐標(biāo)分別為﹣13,則下列結(jié)論正確的是( )

A. 2a﹣b=0

B. a+b+c0

C. 3a﹣c=0

D. 當(dāng)a=時(shí),△ABD是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ ABC中,ABBCM、NBC邊上的兩點(diǎn),并且∠BAM∠CAN,MNAN,則∠MAC    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】投資1萬元圍一個(gè)矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24 m,平行于墻的邊的費(fèi)用為200元/m,垂直于墻的邊的費(fèi)用為150元/m,設(shè)平行于墻的邊長為x m.

(1)設(shè)垂直于墻的一邊長為y m,直接寫出y與x之間的函數(shù)關(guān)系式;

(2)若菜園面積為384 m2,求x的值;

(3)求菜園的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】細(xì)心觀察圖形,認(rèn)真分析各式,然后解答問題:

OA1=1;  

OA2=;   S1=×1×1=;

OA3=;    S2=××1=;

OA4=;    S3=××1=;

(1)推算出OA10=   

(2)若一個(gè)三角形的面積是.則它是第  個(gè)三角形.

(3)用含n(n是正整數(shù))的等式表示上述面積變化規(guī)律;

(4)求出S12+S22+S23+…+S2100的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn) E.

(1)求證:DE=CE.

(2)若∠CDE=35°,求∠A 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為5的正方形ABCD中,以A為一個(gè)頂點(diǎn),另外兩個(gè)頂點(diǎn)在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形的個(gè)數(shù)為(

A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案