【題目】如圖,點A和動點P在直線l上,點P關于點A的對稱點為Q,以AQ為邊作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圓O.點C在點P右側,PC=4,過點C作直線m⊥l,過點O作OD⊥m于點D,交AB右側的圓弧于點E.在射線CD上取點F,使DF= CD,以DE,DF為鄰邊作矩形DEGF.設AQ=3x.

(1)用關于x的代數(shù)式表示BQ,DF.
(2)當點P在點A右側時,若矩形DEGF的面積等于90,求AP的長.
(3)在點P的整個運動過程中,
①當AP為何值時,矩形DEGF是正方形?
②作直線BG交⊙O于點N,若BN的弦心距為1,求AP的長(直接寫出答案).

【答案】
(1)解:在Rt△ABQ中,

∵AQ:AB=3:4,AQ=3x,

∴AB=4x,

∴BQ=5x,

∵OD⊥m,m⊥l,

∴OD∥l,

∵OB=OQ,

=2x,

∴CD=2x,

∴FD= =3x


(2)解:∵AP=AQ=3x,PC=4,

∴CQ=6x+4,

作OM⊥AQ于點M(如圖1),

∴OM∥AB,

∵⊙O是△ABQ的外接圓,∠BAQ=90°,

∴點O是BQ的中點,

∴QM=AM= x

∴OD=MC=

∴OE= BQ= ,

∴ED=2x+4,

S矩形DEGF=DFDE=3x(2x+4)=90,

解得:x1=﹣5(舍去),x2=3,

∴AP=3x=9


(3)解:①若矩形DEGF是正方形,則ED=DF,

I.點P在A點的右側時(如圖1)

∴2x+4=3x,解得:x=4,

∴AP=3x=12;

II.點P在A點的左側時,

當點C在Q右側,

0<x< 時(如圖2),

∵ED=4﹣7x,DF=3x,

∴4﹣7x=3x,解得:x= ,

∴AP= ;

≤x< 時(如圖3),

∵ED=4﹣7x,DF=3x,

∴4﹣7x=3x,解得:x= (舍去),

當點C在Q的左側時,即x≥ (如圖4),

DE=7x﹣4,DF=3x,

∴7x﹣4=3x,解得:x=1,

∴AP=3,

綜上所述:當AP為12或 或3時,矩形DEGF是正方形;

②連接NQ,由點O到BN的弦心距為l,得NQ=2,

當點N在AB的左側時(如圖5),

過點B作BM⊥EG于點M,

∵GM=x,BM=x,

∴∠GBM=45°,

∴BM∥AQ,

∴AI=AB=4x,

∴IQ=x,

∴NQ= =2,

∴x=2

∴AP=6 ;

當點N在AB的右側時(如圖6),

過點B作BJ⊥GE于點J,

∵GJ=x,BJ=4x,

∴tan∠GBJ= ,

∴AI=16x,

∴QI=19x,

∴NQ= =2,

∴x= ,

∴AP=

綜上所述:AP的長為6


【解析】(1)設出參數(shù)x,由垂徑定理可得平分,線段互相代換得出結果;(2)點P的整個運動過程中分為幾個過程,須分類 討論:P在A點的右側;點P在A點的左側時;點C在Q的左側時;可假設矩形DEGF是正方形, 由正方形的性質四條邊相等, 得出AP的長; 若BN的弦心距為1,它是BNQ的中位線,得出NQ=2,分類 討論:N在AB的左側時;點N在AB的右側時;利用平行相似性或三角函數(shù),可求出AP.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,點P是正方形ABCD的BC邊上的一點,以DP為邊長的正方形DEFP與正方形ABCD在BC的同側,連接AC,F(xiàn)B.

(1)請你判斷FB與AC又怎樣的位置關系?并證明你的結論;
(2)若點P在射線CB上運動時,如圖②,判斷(1)中的結論FB與AC的位置關系是否仍然成立?并說明理由;

(3)當點P在射線CB上運動時,請你指出點E的運動路線,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的頂點都在網(wǎng)格點上,建立如圖所示的平面直角坐標系.

1)請根據(jù)如圖所示的平面直角坐標系,寫出△ABC各點的坐標,并求出△ABC的面積.

2)把△ABC平移到△A1B1C1,使點B1與原點O重合,按要求畫出△A1B1C1,并寫出平移過程.

3)已知P是△ABC內有一點,平移至△A1B1C1后,P點對應點的坐標為P1 (a,b),試寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,點的延長線上,,交于點

(1)如圖1,請寫出的數(shù)量關系;

(2)如圖2,若平分,求證:

(3)(2)的條件下,如圖3,連接,若中點,中點,,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=x+k和雙曲線y= (k為正整數(shù))交于A,B兩點.

(1)當k=1時,求A、B兩點的坐標;
(2)當k=2時,求△AOB的面積;
(3)當k=1時,△OAB的面積記為S1 , 當k=2時,△OAB的面積記為S2 , …,依此類推,當k=n時,△OAB的面積記為Sn , 若S1+S2+…+Sn= ,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個一次函數(shù)的圖象在同一坐標系內大致位置正確的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以點A為圓心在梯形內畫出一個最大的扇形,則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y(tǒng)=a(x﹣6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.

(1)當h=2.6時,求y與x的關系式(不要求寫出自變量x的取值范圍)
(2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大于1的正整數(shù)m的三次冪可分裂成若干個連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19m3分裂后,其中有一個奇數(shù)是2015,則m的值是(

A.43B.44C.45D.46

查看答案和解析>>

同步練習冊答案