【題目】點(diǎn)在數(shù)軸上分別表示有理數(shù),兩點(diǎn)之間的距離表示為,在數(shù)軸上A、B兩點(diǎn)之間的距離.
利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示-2和1的兩點(diǎn)之間的距離是______.
(2)數(shù)軸上表示和-1的兩點(diǎn)之間的距離表示為______.
(3)在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),點(diǎn)表示數(shù),且滿足,若是數(shù)軸上任意一點(diǎn),點(diǎn)表示的數(shù)是,當(dāng)時(shí),的值為多少?
【答案】(1)3;(2);(3)的值為或3.
【解析】
(1)直接運(yùn)用距離公式求距離即可;
(2)直接將數(shù)據(jù)代入公式表示距離即可;
(3)首先根據(jù)非負(fù)數(shù)的性質(zhì)易得,再利用距離公式列出方程,畫出數(shù)軸,討論x的取值范圍,并根據(jù)取值范圍去掉絕對(duì)值解方程即可.
(1)數(shù)軸上表示-2和1的兩點(diǎn)之間的距離是,
故答案為:3;
(2)數(shù)軸上表示和-1的兩點(diǎn)之間的距離表示為
故答案為:;
(3)∵且
∴
∴
∴PA=,PB=,PC=
∵
∴
根據(jù)題意,畫出數(shù)軸如下:
①當(dāng)時(shí),
解得,舍去;
②當(dāng)時(shí),
解得,符合題意;
③時(shí),
解得,符合題意;
④當(dāng)時(shí),
解得,舍去.
綜上,的值為或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB的大小為α,P是∠AOB內(nèi)部的一個(gè)定點(diǎn),且OP=4,點(diǎn)E、F分別是OA、OB上的動(dòng)點(diǎn),若△PEF周長(zhǎng)的最小值等于4,則α=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,自左向右,水平擺放一組小球,按照以下規(guī)律排列,如:紅球,黃球,綠球,紅球,黃球,綠球,…嘉琪依次在小球上標(biāo)上數(shù)字1,2,3,4,5,6,…,則從左往右第100個(gè)黃球上所標(biāo)的數(shù)字為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與反比例函數(shù)的圖象關(guān)于軸對(duì)稱,,是函數(shù)圖象上的兩點(diǎn),連接,點(diǎn)是函數(shù)圖象上的一點(diǎn),連接,.
(1)求,的值;
(2)求所在直線的表達(dá)式;
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P,點(diǎn)Q分別代表兩個(gè)村莊,直線l代表兩個(gè)村莊中間的一條公路.根據(jù)居民出行的需要,計(jì)劃在公路l上的某處設(shè)置一個(gè)公交站.
(1)若考慮到村莊P居住的老年人較多,計(jì)劃建一個(gè)離村莊P最近的車站,請(qǐng)?jiān)诠?/span>l上畫出車站的位置(用點(diǎn)M表示),依據(jù)是 ;
(2)若考慮到修路的費(fèi)用問題,希望車站的位置到村莊P和村莊Q的距離之和最小,請(qǐng)?jiān)诠?/span>l上畫出車站的位置(用點(diǎn)N表示),依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測(cè)量操場(chǎng)旗桿AB的高度,他們通過調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5米,EF=0.25米,目測(cè)點(diǎn)D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是BC邊的中點(diǎn),BD=2,tanB=.
(1)求AD和AB的長(zhǎng);
(2)求sin∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.
閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性質(zhì))
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高飲水質(zhì)量,越來越多的居民開始選購(gòu)家用凈水器.一商家抓住商機(jī),從廠家購(gòu)進(jìn)了A、B兩種型號(hào)家用凈水器共160臺(tái),A型號(hào)家用凈水器進(jìn)價(jià)是150元/臺(tái),B型號(hào)家用凈水器進(jìn)價(jià)是350元/臺(tái),購(gòu)進(jìn)兩種型號(hào)的家用凈水器共用去36000元.
(1)求A、B兩種型號(hào)家用凈水器各購(gòu)進(jìn)了多少臺(tái);
(2)為使每臺(tái)B型號(hào)家用凈水器的毛利潤(rùn)是A型號(hào)的2倍,且保證售完這160臺(tái)家用凈水器的毛利潤(rùn)不低于11000元,求每臺(tái)A型號(hào)家用凈水器的售價(jià)至少是多少元?(注:毛利潤(rùn)=售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com