【題目】點(diǎn)在數(shù)軸上分別表示有理數(shù),兩點(diǎn)之間的距離表示為,在數(shù)軸上AB兩點(diǎn)之間的距離

利用數(shù)形結(jié)合思想回答下列問題:

(1)數(shù)軸上表示-21的兩點(diǎn)之間的距離是______

(2)數(shù)軸上表示-1的兩點(diǎn)之間的距離表示為______

(3)在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),點(diǎn)表示數(shù),且滿足,若是數(shù)軸上任意一點(diǎn),點(diǎn)表示的數(shù)是,當(dāng)時(shí),的值為多少?

【答案】13;(2;(3的值為3

【解析】

1)直接運(yùn)用距離公式求距離即可;

2)直接將數(shù)據(jù)代入公式表示距離即可;

3)首先根據(jù)非負(fù)數(shù)的性質(zhì)易得,再利用距離公式列出方程,畫出數(shù)軸,討論x的取值范圍,并根據(jù)取值范圍去掉絕對(duì)值解方程即可.

1)數(shù)軸上表示-21的兩點(diǎn)之間的距離是,

故答案為:3;

2)數(shù)軸上表示-1的兩點(diǎn)之間的距離表示為

故答案為:;

3)∵

PA=,PB=,PC=

根據(jù)題意,畫出數(shù)軸如下:

①當(dāng)時(shí),

解得,舍去;

②當(dāng)時(shí),

解得,符合題意;

時(shí),

解得,符合題意;

④當(dāng)時(shí),

解得,舍去.

綜上,的值為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB的大小為α,P是∠AOB內(nèi)部的一個(gè)定點(diǎn),且OP=4,點(diǎn)E、F分別是OA、OB上的動(dòng)點(diǎn),若△PEF周長(zhǎng)的最小值等于4,則α=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,自左向右,水平擺放一組小球,按照以下規(guī)律排列,如:紅球,黃球,綠球,紅球,黃球,綠球,…嘉琪依次在小球上標(biāo)上數(shù)字12,3,4,5,6,…,則從左往右第100個(gè)黃球上所標(biāo)的數(shù)字為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與反比例函數(shù)的圖象關(guān)于軸對(duì)稱,,是函數(shù)圖象上的兩點(diǎn),連接,點(diǎn)是函數(shù)圖象上的一點(diǎn),連接,.

(1)求,的值;

(2)求所在直線的表達(dá)式;

(3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P,點(diǎn)Q分別代表兩個(gè)村莊,直線l代表兩個(gè)村莊中間的一條公路.根據(jù)居民出行的需要,計(jì)劃在公路l上的某處設(shè)置一個(gè)公交站.

(1)若考慮到村莊P居住的老年人較多,計(jì)劃建一個(gè)離村莊P最近的車站,請(qǐng)?jiān)诠?/span>l上畫出車站的位置(用點(diǎn)M表示),依據(jù)是   ;

(2)若考慮到修路的費(fèi)用問題,希望車站的位置到村莊P和村莊Q的距離之和最小,請(qǐng)?jiān)诠?/span>l上畫出車站的位置(用點(diǎn)N表示),依據(jù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測(cè)量操場(chǎng)旗桿AB的高度,他們通過調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5米,EF=0.25米,目測(cè)點(diǎn)D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,C=90°,點(diǎn)DBC邊的中點(diǎn)BD=2,tanB=

1)求ADAB的長(zhǎng);

2)求sin∠BAD的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大小.

閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)

解:∵BEGF(已知)

∴∠2=∠3(   )

∵∠1=∠3(   )

∴∠1=(   )(   )

DE∥(   )(   )

∴∠EDB+∠DBC=180°(   )

∴∠EDB=180°﹣∠DBC(等式性質(zhì))

∵∠DBC=(   )(已知)

∴∠EDB=180°﹣70°=110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高飲水質(zhì)量,越來越多的居民開始選購(gòu)家用凈水器.一商家抓住商機(jī),從廠家購(gòu)進(jìn)了AB兩種型號(hào)家用凈水器共160臺(tái),A型號(hào)家用凈水器進(jìn)價(jià)是150/臺(tái)B型號(hào)家用凈水器進(jìn)價(jià)是350/臺(tái)購(gòu)進(jìn)兩種型號(hào)的家用凈水器共用去36000

1)求A、B兩種型號(hào)家用凈水器各購(gòu)進(jìn)了多少臺(tái)

2)為使每臺(tái)B型號(hào)家用凈水器的毛利潤(rùn)是A型號(hào)的2,且保證售完這160臺(tái)家用凈水器的毛利潤(rùn)不低于11000,求每臺(tái)A型號(hào)家用凈水器的售價(jià)至少是多少元?(注毛利潤(rùn)=售價(jià)﹣進(jìn)價(jià))

查看答案和解析>>

同步練習(xí)冊(cè)答案