已知直線:和直線:,求兩條直線 的交點坐標(biāo),并判斷該交點落在平面直角坐標(biāo)系的哪一個象限上.

 

【答案】

(2,-3),在第四象限上.

【解析】

試題分析:把組成方程組,解出即可得到結(jié)果。

由題意得,解得  

∴ 直線和直線的交點坐標(biāo)是(2,-3),在第四象限上.

考點:本題考查的是一次函數(shù)的性質(zhì)

點評:解答本題的關(guān)鍵是熟記方程組的解即為每個二元一次方程所對應(yīng)的兩個一次函數(shù)的圖象的交點坐標(biāo)。同時熟記各個象限內(nèi)的點的坐標(biāo)的符號特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線y=-x+6與x軸交于點A,與y軸交于點B,點P為x軸上可以移動的點,且點P在點A的左側(cè),PM⊥x軸,交直線y=-x+6于點M,有一個動圓O′,它與x軸、直線PM和直線y=-x+6都相切,且在x軸的上方.當(dāng)⊙O'與y軸也相切時,點P的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,已知直線y=-x+6與x軸交于點A,與y軸交于點B,點P為x軸上可以移動的點,且點P在點A的左側(cè),PM⊥x軸,交直線y=-x+6于點M,有一個動圓O′,它與x軸、直線PM和直線y=-x+6都相切,且在x軸的上方.當(dāng)⊙O'與y軸也相切時,點P的坐標(biāo)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2002•濟南)如圖,已知直線y=-x+6與x軸交于點A,與y軸交于點B,點P為x軸上可以移動的點,且點P在點A的左側(cè),PM⊥x軸,交直線y=-x+6于點M,有一個動圓O′,它與x軸、直線PM和直線y=-x+6都相切,且在x軸的上方.當(dāng)⊙O'與y軸也相切時,點P的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2002•濟南)如圖,已知直線y=-x+6與x軸交于點A,與y軸交于點B,點P為x軸上可以移動的點,且點P在點A的左側(cè),PM⊥x軸,交直線y=-x+6于點M,有一個動圓O′,它與x軸、直線PM和直線y=-x+6都相切,且在x軸的上方.當(dāng)⊙O'與y軸也相切時,點P的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省濟南市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•濟南)如圖,已知直線y=-x+6與x軸交于點A,與y軸交于點B,點P為x軸上可以移動的點,且點P在點A的左側(cè),PM⊥x軸,交直線y=-x+6于點M,有一個動圓O′,它與x軸、直線PM和直線y=-x+6都相切,且在x軸的上方.當(dāng)⊙O'與y軸也相切時,點P的坐標(biāo)是   

查看答案和解析>>

同步練習(xí)冊答案