作業(yè)寶如圖,平行四邊形ABCD中,點E在DC上,連接AE、BE.點F為AE上一點,且∠BFE=∠C.
求證:
(1)△ABF∽△EAD;
(2)DE•DC=AE•AF.

證明:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,AD∥BC,
∴∠D+∠C=180°.
∵∠AFE+∠BFE=180°且∠BFE=∠C.
∴∠D=∠AFB.
∵AB∥CD,
∴∠BAE=∠AED,
∴△ABF∽△EAD;

(2)∵△ABF∽△EAD,
,
∵AB=CD,
,
∴DE•DC=AE•AF.
分析:(1)由四邊形ABCD是平行四邊形可以得出AB=CD,AB∥CD,AD∥BC,可以得出∠D=∠AFB,可以得出△ABF∽△EAD;
(2)由(1)的結論可以得出,由AB=CD就可以得出結論.
點評:本題考查了相似三角形的判定與性質,平行四邊形的性質的運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點,且S△AOE=
16
3
,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標系內,則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點,AB=3,ED=1,則平行四邊形ABCD的周長是
14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC、BD相交于點O,將直線AC繞點O順時針旋轉一定角度后,分別交BC、AD于點E、F.
精英家教網(wǎng)
(1)試說明在旋轉過程中,線段AF與EC總保持相等;
(2)當旋轉角為90°時,在圖2中畫出直線AC旋轉后的位置并證明此時四邊形ABEF是平行四邊形;
(3)在直線AC旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉的度數(shù).(圖供畫圖或解釋時使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對角線AC和BD相交于點O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD的兩條對角線AC、BD相交于點O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長為
20
20

查看答案和解析>>

同步練習冊答案