兩個(gè)反比例函數(shù)y=
3
x
y=
6
x
在第一象限內(nèi)的圖象如圖所示,點(diǎn)P1、P2在反比例函數(shù)圖象上,過點(diǎn)P1作x軸的平行線與過點(diǎn)P2作y軸的平行線相交于點(diǎn)N,若點(diǎn)N(m,n)恰好在y=
3
x
的圖象上,則NP1與NP2的乘積是
3
3
分析:求出N(m,
3
m
),根據(jù)平行線和N的坐標(biāo)求出P2的橫坐標(biāo)是m,P1的縱坐標(biāo)是
3
m
,代入y=
6
x
,求出P1、P2的坐標(biāo),求出NP2、NP1的值,即可求出NP1與NP2的積.
解答:解:N(m,n)在y=
3
x
上,
∴N(m,
3
m
),
∵NP2∥y軸,NP1∥x軸,
∴P2的橫坐標(biāo)是m,P1的縱坐標(biāo)是
3
m

∵P1、P2在y=
6
x
上,
代入得:①y=
6
m

3
m
=
6
x
,∴x=2m,

∴P1(2m,
3
m
),P2(m,
6
m
),
∴NP2=
6
m
-
3
m
=
3
m
,NP1=2m-m=m,
∴NP1與NP2的積是
3
m
×m=3,
故答案為:3.
點(diǎn)評(píng):本題考查了對(duì)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及其應(yīng)用的運(yùn)用,關(guān)鍵是根據(jù)N的坐標(biāo)求出P1、P2的坐標(biāo),主要考查學(xué)生運(yùn)用性質(zhì)進(jìn)行推理的能力,題目比較典型,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,兩個(gè)反比例函數(shù)y=
k1
x
y=
k2
x
(其中k1>k2>0)在第一象限內(nèi)的圖象依次是C1和C2,設(shè)點(diǎn)P在C1精英家教網(wǎng),PC⊥x軸于點(diǎn)C,交C2于點(diǎn)A,PD⊥y軸于點(diǎn)D,交C2于點(diǎn)B,下列說法正確的是(  )
①△ODB與△OCA的面積相等;
②四邊形PAOB的面積等于k2-k1;③PA與PB始終相等;
④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).
A、①②B、①②④
C、①④D、①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,兩個(gè)反比例函數(shù)y=
8
x
y=
4
x
在第一象限內(nèi)的圖象依次是C1和C2,設(shè)點(diǎn)P在C1上,PC⊥x軸于點(diǎn)C,交C2于點(diǎn)A,PD⊥y軸于點(diǎn)D,交C2于點(diǎn)B,則四邊形PAOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,兩個(gè)反比例函數(shù)y=
k1
x
y=
k2
x
(其中k1>k2>0)在第一象限內(nèi)的圖象依次是C1精英家教網(wǎng)
C2,設(shè)點(diǎn)P在C1上,PC⊥x軸于點(diǎn)C,交C2于點(diǎn)A,PD⊥y軸于點(diǎn)D,交C2于點(diǎn)B,下列說法正確的是( 。  
①△ODB與△OCA的面積相等;②四邊形PAOB的面積等于k1-k2;
③PA與PB始終相等;        ④當(dāng)點(diǎn)A是PC的三等分點(diǎn)時(shí),點(diǎn)B一定是PD三等分點(diǎn).
A、①②B、①②④
C、①④D、①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
k1
x
(k1>0)和y=
k2
x
(k2<0),點(diǎn)A在y軸的正半軸上,過點(diǎn)A作直線BC∥x軸,且分別與兩個(gè)反比例函數(shù)的圖象交于點(diǎn)B和C,連接OC、OB.若△BOC的面積為
5
2
,AC:AB=2:3,則k1•k2=
-6
-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知兩個(gè)反比例函數(shù)y=
8
x
y=
4
x
在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=
8
x
上,PC⊥x軸于點(diǎn)C,交y=
4
x
的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y=
4
x
的圖象于點(diǎn)B,則陰影部分的面積為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案