如圖,拋物線y=x2﹣2x+c的頂點A在直線l:y=x﹣5上.

(1)求拋物線頂點A的坐標(biāo);

(2)設(shè)拋物線與y軸交于點B,與x軸交于點C.D(C點在D點的左側(cè)),試判斷△ABD的形狀;

(3)在直線l上是否存在一點P,使以點P、A.B.D為頂點的四邊形是平行四邊形?若存在,求點P的坐標(biāo);若不存在,請說明理由.

考點:二次函數(shù)綜合題。

解答:解:(1)∵頂點A的橫坐標(biāo)為x==1,且頂點A在y=x﹣5上,

∴當(dāng)x=1時,y=1﹣5=﹣4,

∴A(1,﹣4).

(2)△ABD是直角三角形.

將A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,

∴y=x2﹣2x﹣3,∴B(0,﹣3)

當(dāng)y=0時,x2﹣2x﹣3=0,x1=﹣1,x2=3

∴C(﹣1,0),D(3,0),

BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,

BD2+AB2=AD2,

∴∠ABD=90°,即△ABD是直角三角形.

(3)存在.

由題意知:直線y=x﹣5交y軸于點A(0,﹣5),交x軸于點F(5,0)

∴OE=OF=5,又∵OB=OD=3

∴△OEF與△OBD都是等腰直角三角形

∴BD∥l,即PA∥BD

則構(gòu)成平行四邊形只能是PADB或PABD,如圖,

過點P作y軸的垂線,過點A作x軸的垂線并交于點C

設(shè)P(x1,x1﹣5),則G(1,x1﹣5)

則PC=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|

PA=BD=3

由勾股定理得:

(1﹣x12+(1﹣x12=18,x12﹣2x1﹣8=0,x1=﹣2,4

∴P(﹣2,﹣7),P(4,﹣1)

存在點P(﹣2,﹣7)或P(4,﹣1)使以點A.B.D.P為頂點的四邊形是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點B、O,它的頂點為A,連接AB,AO.
(1)求點A的坐標(biāo);
(2)以點A、B、O、P為頂點構(gòu)造直角梯形,請求一個滿足條件的頂點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點A(x1,0)、B(x2,0),點A在點B的左側(cè).當(dāng)x=x2-2時,y
0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對稱軸是直線x=-1,且頂點在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動點,過點M作x軸的垂線MG,垂足為G,過點M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點,若M點的橫坐標(biāo)為x,矩形MNHG的周長為l.
(1)求出k的值;
(2)寫出l關(guān)于x的函數(shù)解析式;
(3)是否存在點M,使矩形MNHG的周長最小?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•揚州)如圖,拋物線y=x2-2x-8交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點.
(1)求A,B兩點的坐標(biāo);
(2)求拋物線頂點M關(guān)于x軸對稱的點M′的坐標(biāo),并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習(xí)冊答案