年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省無錫市崇安區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF.
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過的線段長度).當(dāng)點(diǎn)F分別平移到線段AB.AD上時(shí),直接寫出相應(yīng)的m的值.
(3)如圖②,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省南京市建鄴區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:填空題
一組數(shù)據(jù)4、5、6、7、8的方差為S12,另一組數(shù)據(jù)3、5、6、7、9的方差為S22,那么S12 S22(填“>”、“=”或“<”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省南京市鼓樓區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,OA.OB是⊙O的半徑且OA⊥OB,作OA的垂直平分線交⊙O于點(diǎn)C.D,連接CB.AB.
求證:∠ABC=2∠CBO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省南京市鼓樓區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
(1)解方程組
(2)解不等式2x-1≥,并把它的解集在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省七年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題9分)把代數(shù)式通過配湊等手段,得到完全平方式,再運(yùn)用完全平方式是非負(fù)性這一性質(zhì)增加問題的條件,這種解題方法叫做配方法.配方法在代數(shù)式求值,解方程,最值問題等都有著廣泛的應(yīng)用.
例如:①用配方法因式分【解析】
a2+6a+8
原式=a2+6a+9-1
=(a+3)2 –1
=(a+3-1)(a+3+1)
=(a+2)(a+4)
②若M=a2-2ab+2b2-2b+2,利用配方法求M的最小值:
a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1
=(a-b)2+(b-1)2 +1
∵(a-b)2≥0,(b-1)2 ≥0
∴當(dāng)a=b=1時(shí),M有最小值1
請(qǐng)根據(jù)上述材料解決下列問題:
(1)在橫線上添上一個(gè)常數(shù)項(xiàng)使之成為完全平方式:a 2+4a+ .
(2)用配方法因式分解: a2-24a+143
(3)若M=a2+2a +1,求M的最小值.
(4)已知a2+b2+c2-ab-3b-4c+7=0,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省七年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
若=1,則t可以取的值有( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年遼寧省鞍山市七年級(jí)下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:填空題
(5分)學(xué)著說點(diǎn)理,填空:
如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.
理由如下:
∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,( )
∴AD∥EG,( )
∴∠1=∠2,( )
∠E=∠3,(兩直線平行,同位角相等)
又∵∠E=∠1(已知)
∴ = (等量代換)
∴AD平分∠BAC( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com