【題目】下列運算中,正確的是( )
A.5a﹣2a=3
B.(x+2y)2=x2+4y2
C.x8÷x4=x2
D.(2a)3=8a3

【答案】D
【解析】解:A、5a﹣2a=3a,故錯誤;
B、(x+2y)2=x2+4xy+4y2 , 故錯誤;
C、x8÷x4=x4 , 故錯誤;
D、正確;
故選:D.
【考點精析】通過靈活運用合并同類項和同底數(shù)冪的除法,掌握在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變;同底數(shù)冪的除法法則:am÷an=am-n(a≠0,m,n都是正整數(shù),且m>n)即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,某溫室屋頂結構外框為△ABC,立柱AD垂直平分橫梁BC,∠B=30°,斜梁AC=4m,為增大向陽面的面積,將立柱AD增高并改變位置后變?yōu)镋F,使屋頂結構外框由△ABC變?yōu)椤鱁BC(點E在BA的延長線上)如圖2所示,且立柱EF⊥BC,若EF=3m,則斜梁增加部分AE的長為m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知不等式 的最小整數(shù)解為方程 的解,求代數(shù)式 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明每天早晨在8時前趕到離家1千米的學校上學.一天,小明以80米/分的速度從家出發(fā)去學校,5分鐘后,小明爸爸發(fā)現(xiàn)小明的語文書落在家里,于是,立即以180米/分的速度去追趕.則小明爸爸追上小明所用的時間為(
A.2分鐘
B.3分鐘
C.4分鐘
D.5分鐘

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出:
(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN. 下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE,即∠NMC=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X,請你作出猜想:當∠AMN=時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式中,正確的是(
A.|﹣0.1|<0
B. <﹣|﹣ ?|
C. >0.86
D.﹣2=﹣|﹣2|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:(不要求寫作法)如圖,△ABC在平面直角坐標系中,其中,點A,B,C的坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).

(1)作△ABC關于y軸對稱的△A1B1C1 , 其中,點A、B、C的對應點分別為A1、B1、C1;
(2)寫出點A1、B1、C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列圖形性質(zhì)中,矩形不一定具有的是(

A.對角線互相平分且相等B.四個角相等

C.既是軸對稱圖形,又是中心對稱圖形D.對角線互相垂直平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程x24x化成一般形式后,它的一次項系數(shù)是( )

A.4B.4C.0D.1

查看答案和解析>>

同步練習冊答案