分析 (1)根據(jù)題意分別求出BE、BF的長(zhǎng),根據(jù)勾股定理計(jì)算即可;
(2)作EH∥BC交AC于H,根據(jù)正方形的性質(zhì)得到∠BAC=45°,根據(jù)勾股定理得到AH=$\sqrt{2}$AE,根據(jù)平行線分線段成比例定理得到HC=2CG,得到答案;
(3)作EP∥BC交AC的延長(zhǎng)線于P,與(2)的方法類似,證明即可.
解答 (1)解:∵正方形的邊長(zhǎng)為4,AE=3,
∴BE=4-3=1,
∵AE=CF,
∴CF=3,
∴BF=BC+CF=7,
∴EF=$\sqrt{B{E}^{2}+B{F}^{2}}$=5$\sqrt{2}$;
(2)證明:如圖2,作EH∥BC交AC于H,
∵四邊形ABCD是正方形,
∴∠BAC=45°,
∴AH=EH=$\sqrt{2}$AE,
∵AE=CF,
∴EH=CF,又EF∥CF,
∴HG=CG,即HC=2CG,
∴AC=AH+HC=$\sqrt{2}$AE+2CG;
(3)AC=$\sqrt{2}$AE-2CG.
證明:如圖3,作EP∥BC交AC的延長(zhǎng)線于P,
∵四邊形ABCD是正方形,
∴∠BAC=45°,
∴AP=EP=$\sqrt{2}$AE,
∵AE=CF,
∴EP=CF,又EF∥CF,
∴PG=CG,即PC=2CG,
∴AC=AP-PC=$\sqrt{2}$AE-2CG.
點(diǎn)評(píng) 本題考查的是正方形的性質(zhì)、平行線分線段成比例定理以及全等三角形的判定和性質(zhì),掌握相關(guān)的性質(zhì)定理、靈活運(yùn)用類比思想是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | AO=BO=CO=DO,AC⊥BD | B. | AB∥CD,AC=BD | ||
C. | AD∥BC,∠A=∠C | D. | AO=DO,BO=CO,AD=AB |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:4 | B. | 1:3 | C. | 3:8 | D. | 7:16 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12π | B. | 8π | C. | 6π | D. | 4π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com