解:(1)∵OF是∠BCA的外角平分線,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
∵MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F
∴∠ECF=90°,
∵CE=12,CF=5,
∴EF=
=13,
∵CE是∠ACB的角平分線,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∴CO是△ECF上的中線,
∴CO=
EF=6.5;
(2)點O是AC的中點且∠ACB=90°,
理由:∵O為AC中點,
∴OA=OC,
∵由(1)知OE=OF,
∴四邊形AECF為平行四邊形;
∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,
∴∠2+∠5=90°,即∠ECF=90°,
∴?AECF為矩形,
又∵AC⊥EF.
∴?AECF是正方形.
∴當點O為AC中點且△ABC是以∠ACB為直角三角形時,四邊形AECF是正方形.
分析:(1)利用角平分線的性質(zhì)以及平行線的性質(zhì)得出OE=OF,進而利用勾股定理求出EF的長,即可得出CO的長;
(2)利用平行四邊形及矩形的性質(zhì)和判定證明四邊形AECF是正方形.
點評:本題考查的是平行線、角平分線、正方形、平行四邊形的性質(zhì)與判定,涉及面較廣,在解答此類題目時要注意角的運用,一般通過角判定一些三角形,多邊形的形狀,需同學(xué)們熟練掌握.