如圖所示,橋拱是拋物線形,其函數(shù)解析式是y=-
1
4
x2,當水位線在AB位置時,水面寬為12米,這時水面離橋頂?shù)母叨萮是______米.
由y=-
1
4
x2,由題知,
當x=±6時,y=9,
即水面離橋頂?shù)母叨萮是9米.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(以下兩小題選做一題,第1小題滿分14分,第2小題滿分為10分.若兩小題都做,以第1小題計分)
選做第______小題.
(1)一張矩形紙片OABC平放在平面直角坐標系內,O為原點,點A在x的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
①如圖,將紙片沿CE對折,點B落在x軸上的點D處,求點D的坐標;
②在①中,設BD與CE的交點為P,若點P,B在拋物線y=x2+bx+c上,求b,c的值;
③若將紙片沿直線l對折,點B落在坐標軸上的點F處,l與BF的交點為Q,若點Q在②的拋物線上,求l的解析式.
(2)一張矩形紙片OABC平放在平面直角坐標系內,O為原點,點A在x的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
①求直線AC的解析式;
②若M為AC與BO的交點,點M在拋物線y=-
8
5
x2+kx上,求k的值;
③將紙片沿CE對折,點B落在x軸上的點D處,試判斷點D是否在②的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中放置一直角三角板,其頂點為A(0,1),B(2,0),O(0,0),將此三角板繞原點O逆時針旋轉90°,得到△A′B′O.
(1)一拋物線經過點A′、B′、B,求該拋物線的解析式;
(2)設點P是在第一象限內拋物線上的一動點,是否存在點P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請求出P的坐標;若不存在,請說明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫出四邊形PB′A′B的兩條性質.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖甲,分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上),拋物線y=
1
4
x2+bx+c
經過A、C兩點,與x軸的另一交點為G,M是FG的中點,正方形CDEF的面積為1.
(1)求B點坐標;
(2)求證:ME是⊙P的切線;
(3)設直線AC與拋物線對稱軸交于N,Q點是此對稱軸上不與N點重合的一動點,
①求△ACQ周長的最小值;
②若FQ=t,S△ACQ=S,直接寫出S與t之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)的頂點坐標是(-2,-1),與x軸有兩個交點且交點間的距離是2,則這個拋物線的解析式為y=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-4x+c的圖象經過點A和點B.
(1)求該二次函數(shù)的表達式;
(2)寫出該拋物線的對稱軸及頂點坐標;
(3)過點B作BC垂直于x軸于點C,求△AOC的面積?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

醫(yī)藥公司推出了一種抗感冒藥,年初上市后,公司經歷了從虧損到盈利的過程.如圖的二次函數(shù)圖象(部分)表示了該公司年初以來累積利潤S(萬元)與時間t(月)之間的關系(即前t個月的利潤總和S與t之間的關系).
根據(jù)圖象提供信息,解答下列問題:
(1)公司從第幾個月末開始扭虧為盈;
(2)累積利潤S與時間t之間的函數(shù)關系式;
(3)求截止到幾月末公司累積利潤可達30萬元;
(4)求第8個月公司所獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

利民商店經銷甲、乙兩種商品.現(xiàn)有如下信息:

請根據(jù)以上信息,解答下列問題:
(1)甲、乙兩種商品的進貨單價各多少元?
(2)該商店平均每天賣出甲商品500件和乙商品300件.經調查發(fā)現(xiàn),甲、乙兩種商品零售單價分別每降0.1元,這兩種商品每天可各多銷售100件.為了使每天獲取更大的利潤,商店決定把甲、乙兩種商品的零售單價都下降m元.在不考慮其他因素的條件下,當m定為多少時,才能使商店每天銷售甲、乙兩種商品獲取的利潤最大?每天的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場將進價為1800元的電冰箱以每臺2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施.調查表明:這種冰箱的售價每降價50元,平均每天就能多售出4臺.
(1)設每臺冰箱降價x元,商場每天銷售這種冰箱的利潤為y元,求y與x之間的函數(shù)關系式(不要求寫自變量的取值范圍).
(2)商場想在這種冰箱的銷售中每天盈利8000元,同時又要使顧客得到實惠,每臺冰箱應降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少元?

查看答案和解析>>

同步練習冊答案