【題目】如圖,在△ABC中,CF⊥ABF,BE⊥ACE,MBC的中點.

(1)若EF=3,BC=8,求△EFM的周長;

(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度數(shù).

【答案】(1)11;(2)40°.

【解析】

(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得EMMCBCMFMBBC,然后根據(jù)三角形的周長的定義列式計算即可得解;

(2)根據(jù)等邊對等角求出,∠ABC=∠MFB,∠ACB=∠MEC,再根據(jù)三角形的內(nèi)角和定理求出∠BMF, ∠EMC,然后利用平角等于180°列式計算即可得解.

1)∵CFABF, MBC的中點,∴MEMCBC×84,同理MFMBBC×84,∴△EFM的周長=44311

2)∵MFMB,∴∠ABC=∠MFB50°,同理∠ACB=∠MEC60°,∴∠BMF180°-50°-50°=80°,∠EMC180°-60°-60°=60°,∴∠EMF180°-80°-60°=40°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】光明中學八年級甲、乙、丙三個班中,每班的學生人數(shù)都為40名,某次數(shù)學考試的成績統(tǒng)計如圖:(每組分數(shù)含最小值,不含最大值)

丙班數(shù)學成績頻數(shù)統(tǒng)計表

分數(shù)

50~60

60~70

70~80

80~90

90~100

人數(shù)

1

4

15

11

9

 根據(jù)上圖及統(tǒng)計表提供的信息,則80~90分這一組人數(shù)最多的班是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】⊙O是△ABC的外接圓,AB是直徑,過 的中點P作⊙O的直徑PG,與弦BC相交于點D,連接AG、CP、PB.
(1)如圖1,求證:AG=CP;

(2)如圖2,過點P作AB的垂線,垂足為點H,連接DH,求證:DH∥AG;

(3)如圖3,連接PA,延長HD分別與PA、PC相交于點K、F,已知FK=2,△ODH的面積為2 ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)

為何值時,yx的增大而減。

為何值時,直線與y軸的交點在x軸下方?

為何值時,直線位于第二、三、四象限?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m,求這塊草坪的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點A(1,﹣k+4).

(1)試確定這兩函數(shù)的表達式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標,并求△AOB的面積;
(3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,ADBCD,DEACE,DFABACF,連接EF。

(1)當ABC滿足什么條件時,四邊形AEDF是矩形;

(2)當ABC滿足什么條件時,四邊形AEDF是正方形,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC,若CE=5,則BC等于( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊四邊形田地ABCD,∠D=90°,AB=13m,BC=12m,CD=3m,DA=4m,則該四邊形田地ABCD的面積為_____

查看答案和解析>>

同步練習冊答案