如圖,A(,1),B(1,).將△AOB繞點O旋轉(zhuǎn)150°得到△A′OB′,則此時點A的對應(yīng)點A′的坐標(biāo)為( )

A.(-,-1)
B.(-2,0)
C.(-1,-)或(-2,0)
D.(-,-1)或(-2,0)
【答案】分析:根據(jù)點A、B的坐標(biāo)求出OA與x軸正半軸夾角為30°,OB與y軸正半軸夾角為30°,從而得到∠AOB=30°,再利用勾股定理求出OA、OB的長度,然后分①順時針旋轉(zhuǎn)時,點A′與點B關(guān)于坐標(biāo)原點O成中心對稱,然后根據(jù)關(guān)于原點對稱的點的橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)解答;②逆時針旋轉(zhuǎn)時,點A′在x軸負(fù)半軸上,然后寫出點A′的坐標(biāo)即可.
解答:解:∵A(,1),B(1,),
∴tanα==,
∴OA與x軸正半軸夾角為30°,OB與y軸正半軸夾角為30°,
∴∠AOB=90°-30°-30°=30°,
根據(jù)勾股定理,OA==2,
OB==2,
①如圖1,順時針旋轉(zhuǎn)時,
∵150°+30°=180°,
∴點A′、B關(guān)于原點O成中心對稱,
∴點A′(-1,-);
②如圖2,逆時針旋轉(zhuǎn)時,
∵150°+30°=180°,
∴點A′在x軸負(fù)半軸上,
∴點A′的坐標(biāo)是(-2,0).
綜上所述,點A′的坐標(biāo)為(-1,-)或(-2,0).
故選C.
點評:本題考查了坐標(biāo)與圖形的變化-旋轉(zhuǎn),根據(jù)角度度數(shù)判斷出點A′的位置是解題的關(guān)鍵,要注意分情況討論求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案